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1. Strings in QCD.

1.1. The linear trajectories.

In the ’50’s, mesons and baryons were found to have many excited states, called res-
onances, and in the ’60’s, their scattering amplitudes were found to be related to the
so-called Regge trajectories: J = α(s), where J is the angular momentum and s = M2 ,
the square of the energy in the center of mass frame. A resonance occurs at those s values
where α(s) is a nonnegative integer (mesons) or a nonnegative integer plus 1

2
(baryons).

The largest J values at given s formed the so-called ‘leading trajectory’. Experimentally,
it was discovered that the leading trajectories were almost linear in s :

α(s) = α(0) + α′ s . (1.1)

Furthermore, there were ‘daughter trajectories’:

α(s) = α(0)− n + α′ s . (1.2)

where n appeared to be an integer. α(0) depends on the quantum numbers such as
strangeness and baryon number, but α′ appeared to be universal, approximately 1 GeV−2 .

It took some time before the simple question was asked: suppose a meson consists of
two quarks rotating around a center of mass. What force law could reproduce the simple
behavior of Eq. (1.1)? Assume that the quarks move highly relativistically (which is
reasonable, because most of the resonances are much heavier than the lightest, the pion).
Let the distance between the quarks be r . Each has a transverse momentum p . Then, if
we allow ourselves to ignore the energy of the force fields themselves (and put c = 1),

s = M2 = (2p)2 . (1.3)

The angular momentum is

J = 2 p
r

2
= p r . (1.4)

The centripetal force must be

F =
p c

r/2
=

2p

r
. (1.5)

For the leading trajectory, at large s (so that α(0) can be ignored), we find:

r =
2J√

s
= 2α′

√
s ; F =

s

2 J
=

1

2 α′
, (1.6)

or: the force is a constant, and the potential between two quarks is a linearly rising one.

But it is not quite correct to ignore the energy of the force field, and, furthermore, the
above argument does not explain the daughter trajectories. A more satisfactory model of
the mesons is the vortex model : a narrow tube of field lines connects the two quarks. This

4



linelike structure carries all the energy. It indeed generates a force that is of a universal,
constant strength: F = dE/dr . Although the quarks move relativistically, we now ignore
their contribution to the energy (a small, negative value for α(0) will later be attributed
to the quarks). A stationary vortex carries an energy T per unit of length, and we take
this quantity as a constant of Nature. Assume this vortex, with the quarks at its end
points, to rotate such that the end points move practically with the speed of light, c . At
a point x between −r/2 and r/2, the angular velocity is v(x) = c x/(r/2). The total
energy is then (putting c = 1):

E =
∫ r/2

−r/2

T dx√
1− v2

= T r
∫ 1

0
(1− x2)−1/2 dx = 1

2
π T r , (1.7)

while the angular momentum is

J =
∫ r/2

−r/2

T v x dx√
1− v2

= 1
2
T r2

∫ 1

0

x2 dx√
1− x2

=
T r2π

8
. (1.8)

Thus, in this model also,

J

E2
=

1

2πT
= α′ ; α(0) = 0 , (1.9)

but the force, or string tension, T , is a factor π smaller than in Eq. (1.6).

1.2. The Veneziano formula.

4

32

1

Consider elastic scattering of two mesons, (1) and (2), forming two other mesons (3)
and (4). Elastic here means that no other particles are formed in the process. The ingoing
4-momenta are p(1)

µ and p(2)
µ . The outgoing 4-momenta are p(3)

µ and p(4)
µ . The c.m. energy

squared is

s = −(p(1)
µ + p(2)

µ )2 . (1.10)

An independent kinematical variable is

t = −(p(1)
µ − p(4)

µ )2 . (1.11)

Similarly, one defines

u = −(p(1)
µ − p(3)

µ )2 , (1.12)
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but that is not independent:

s + t + u =
4∑

i=1

m2
(i) . (1.13)

G. Veneziano asked the following question: What is the simplest model amplitude that
shows poles where the resonances of Eqs. (1.1) and (1.2) are, either in the s-channel or in
the t-channel? We do not need such poles in the u-channel since these are often forbidden
by the quantum numbers, and we must avoid the occurrence of double poles.

The Gamma function, Γ(x), has poles at negative integer values of x , or, x =
0, −1, −2, · · · . Therefore, Veneziano tried the amplitude

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
. (1.14)

Here, the denominator was planted so as to avoid double poles when both α(s) and α(t)
are nonnegative integers. This formula is physically acceptable only if the trajectories
α(s) and α(t) are linear, for the following reason. Consider the residue of one of the

poles in s . Using Γ(x) → (−1)n

n!
1

x+n
when x → −n , we see that

α(s) → n ≥ 0 : A(s, t) → (−1)n

n!

1

n− α(s)

Γ(−α(t))

Γ(−α(t)− n)
. (1.15)

Here, the α(t) dependence is the polynomial

Γ(a + n)/Γ(a) = (a + n− 1) · · · (a + 1)a ; a = −α(t)− n , (1.16)

called the Pochhammer polynomial. Only if α(t) is linear in t , this will be a polynomial
of degree n in t . Notice that, in the c.m. frame,

t = −(p(1)
µ − p(4)

µ )2 = m2
(1) + m2

(4) − 2E(1)E(4) + 2|p(1)||p(4)| cos θ . (1.17)

Here, θ is the scattering angle. In the case of a linear trajectory in t , we have a polynomial
of degree n in cos θ . From group representation theory, we know that, therefore, the
intermediate state is a superposition of states with angular momentum J maximally
equal to n . We conclude that the nth resonance in the s channel consists of states whose
angular momentum is maximally equal to n . So, the leading trajectory has J = α(s), and
there are daughter trajectories with lower angular momentum. Notice that this would not
be true if we had forgotten to put the denominator in Eq. (1.14), or if the trajectory in
t were not linear. Since the Pochhammer polynomials are not the same as the Legendre
polynomials, superimposed resonances appear with J lower than n , the daughters. An
important question concerns the sign of these contributions. A negative sign could indicate
intermediate states with indefinite metric, which would be physically unrealistic. In the
early ’70s, such questions were investigated purely mathematically. Presently, we know
that it is more fruitful to study the physical interpretation of Veneziano’s amplitude (as
well as generalizations thereof, which were soon discovered).
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The Veneziano amplitude A(s, t) of Eq. (1.14) is the beta function:

A(s, t) = B(−α(s),−α(t)) =
∫ 1

0
x−α(s)−1(1− x)−α(t)−1dx . (1.18)

The fact that the poles of this amplitude, at the leading values of the angular momen-
tum, obey exactly the same energy-angular momentum relation as the rotating string of
Eq. (1.9), is no coincidence, as will be seen in what follows (section 6, Eq. (6.22)).

2. The classical string.

Consider a kind of material that is linelike, being evenly distributed over a line. Let it
have a tension force T . If we stretch this material, the energy we add to it is exactly
T per unit of length. Assume that this is the only way to add energy to it. This is
typical for a vortex line of a field. Then, if the material is at rest, it carries a mass
that (up to a factor c2 , which we put equal to one) is also T per unit of length. In the
simplest conceivable case, there is no further structure in this string. It then does not
alter if we Lorentz transform it in the longitudinal direction. So, we assume that the
energy contained in the string only depends on its velocity in the transverse direction.
This dependence is dictated by relativity theory: if uµ

⊥ is the 4-velocity in the transverse
direction, and if both the 4-momentum density pµ and uµ transform the same way under
transverse Lorentz transformations, then the energy density dU/d` must be just like the
energy of a particle in 2+1 dimensions, or

dU

d`
=

T√
1− v2

⊥/c2
. (2.1)

In a region where the transverse velocity v⊥ is non-relativistic, this simply reads as

U = Ukin + V ; Ukin =
∫

1
2
T v2

⊥ d` , V =
∫

T d` , (2.2)

which is exactly the energy of a non-relativistic string with mass density T and a tension
T , responsible for the potential energy. Indeed, if we have a string stretching in the
z -direction, with a tiny deviation x̃(z), where x̃ is a vector in the (xy)-direction, then

d`

dz
=

√
1 +

(
∂x̃

∂z

)2

≈ 1 + 1
2

(
∂x̃

∂z

)2

; (2.3)

U ≈
∫

dz

(
T + 1

2
T

(
∂x̃

∂z

)2

+ 1
2
T ( ˙̃x)2

)
. (2.4)

We recognize a ‘field theory’ for a two-component scalar field in one space-, one time-
dimension.

In the non-relativistic case, the Lagrangian is then

L = Ukin − V = −
∫

T (1− 1
2
v2
⊥) d` = −

∫
T

√
1− v2

⊥ d` . (2.5)
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Since the eigen time dτ for a point moving in the transverse direction along with the

string, is given by dt
√

1− v2
⊥ , we can write the action S as

S =
∫

L dt = −
∫

T d` dτ . (2.6)

Now observe that this expression is Lorentz covariant. Therefore, if it holds for describing
the motion of a piece of string in a frame where it is non-relativistic, it must describe the
same motion in all lorentz frames. Therefore, this is the action of a string. The ‘surface
element’ d` dτ is the covariant measure of a piece of a 2-surface in Minkowski space.

To understand hadronic particles as excited states of strings, we have to study the
dynamical properties of these strings, and then quantize the theory. At first sight, this
seems to be straightforward. We have a string with mass per unit of length T and a
tension force which is also T (in units where c = 1). Think of an infinite string stretching
in the z direction. The transverse excitation is described by a vector xtr(z, t) in the
x y direction, and the excitations move with the speed of sound, here equal to the speed
of light, in the positive and negative z -direction. This is nothing but a two-component
massless field theory in one space-, one time-dimension. Quantizing that should not be a
problem.

Yet it is a non-linear field theory; if the string is strongly excited, it no longer stretches
in the z -direction, and other tiny excitations then move in the z -direction slower. Strings
could indeed reorient themselves in any direction; to handle that case, a more powerful
scheme is needed. This would have been a hopeless task, if a fortunate accident would
not have occurred: the classical theory is exactly soluble. But, as we shall see, the
quantization of that exact solution is much more involved than just a renormalizable
massless field theory.

In Minkowski space-time, a string sweeps out a 2-dimensional surface called the “world
sheet”. Introduce two coordinates to describe this sheet: σ is a coordinate along the
string, and τ a timelike coordinate. The world sheet is described by the functions
Xµ(σ, τ), where µ runs from 0 to d , the number of space dimensions1. We could put
τ = X0 = t , but we don’t have to. The surface element d` dτ of Eq. (2.6) will in general
be the absolute value of

Σµν =
∂ Xµ

∂ σ

∂ Xν

∂ τ
− ∂ Xν

∂ σ

∂ Xµ

∂ τ
, (2.7)

We have

1
2
ΣµνΣµν = (∂σX

µ)2(∂τX
ν)2 − (∂σX

µ∂τX
µ)2 . (2.8)

The surface element on the world sheet of a string is timelike. Note that we are assuming
the sign convention (− + + +) for the Minkowski metric; throughout these notes, a
repeated index from the middle of the Greek alphabet is read as follows:

Xµ2 ≡ ηµνX
µXν = X12

+ X22
+ · · ·+ (XD−1)2 −X02

,

1We use D to denote the total number of spacetime dimensions: d = D − 1.
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where D stands for the number of space-time dimensions, usually (but not always) D = 4.
We must write the Lorentz invariant timelike surface element that figures in the action as

S = −T
∫

dσ dτ
√

(∂σXµ∂τXµ)2 − (∂σXµ)2(∂τXν)2 . (2.9)

This action, Eq. (2.9), is called the Nambu-Goto action. One way to proceed now is to
take the coordinates σ and τ to be light-cone coordinates on the string world sheet. In
order to avoid confusion later, we refer to such coordinates as σ+ and σ− instead of σ
and τ . These coordinates are defined in such a way that

(∂+Xµ)2 = (∂−Xµ)2 = 0 . (2.10)

The second term inside the square root is then a double zero, which implies that it
also vanishes to lowest order if we consider an infinitesimal variation of the variables
Xµ(σ+, σ−). Thus, keeping the constraint (2.10) in mind, we can use as our action

S = T
∫

∂+Xµ∂−Xµ dσ+dσ− . (2.11)

With this action being a bilinear one, the associated Euler-Lagrange equations are linear,
and easy to solve:

∂+ ∂− Xµ = 0 ; Xµ = aµ(σ+) + bµ(σ−) . (2.12)

The conditions (2.10) simply imply that the functions aµ(σ+) and bµ(σ−), which would
otherwise be arbitrary, now have to satisfy one constraint each:

(∂+aµ(σ+))2 = 0 ; (∂−bµ(σ−))2 = 0 . (2.13)

It is not hard to solve these equations: since ∂+a0 =
√

(∂+~a)2 , we have

a0(σ+) =
∫ σ+ √

(∂+~a(σ1))2dσ1 ; b0(σ−) =
∫ σ− √

(∂+
~b(σ1))2dσ1 , (2.14)

which gives us a0(σ+) and b0(σ−), given ~a(σ+) and ~b(σ−). This completes the classical
solution of the string equations.

Note that Eq. (2.11) can only be used if the sign of this quantity remains the same
everywhere.

Exercise: Show that ∂+Xµ∂−Xµ can switch sign only at a point (σ+
0 , σ−0 ) where

∂+aµ(σ+
0 ) = C · ∂−bµ(σ−0 ). In a generic case, such points will not exist.

This justifies our sign assumption.

For future use, we define the induced metric hαβ(σ, τ) as

hαβ = ∂αXµ ∂βXµ , (2.15)
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where indices at the beginning of the Greek alphabet, running from 1 to 2, refer to the
two world sheet coordinates, for instance:

σ1 = σ , σ2 = τ , or, as the case may be, σ1,2 = σ± , (2.16)

the distances between points on the string world sheet being defined by ds2 = hαβ dσαdσβ .
The Nambu-Goto action is then

S = −T
∫

d2σ
√

h ; h = − det
αβ

(hαβ) , d2σ = dσ dτ . (2.17)

We can actually treat hαβ as an independent variable when we replace the action (2.9)
by the so-called Polyakov action:

S = −T

2

∫
d2σ

√
h hαβ∂αXµ∂βXµ , (2.18)

where, of course, hαβ stands for the inverse of hαβ . Varying this action with respect to
hαβ gives

hαβ → hαβ + δhαβ ; δS = T
∫

d2σ δhαβ
√

h (∂αXµ∂βXµ − 1
2
hαβhγδ∂γX

µ∂δX
µ) . (2.19)

Requiring δS in Eq. (2.19) to vanish for all δhαβ(σ, τ) does not give Eq. (2.15), but
instead

hαβ = C(σ, τ)∂αXµ∂βXµ . (2.20)

Notice, however, that the conformal factor C(σ, τ) cancels out in Eq. (2.18), so that
varying it with respect to Xµ(σ, τ) still gives the correct string equations. C is not fixed
by the Euler-Lagrange equations at all.

So-far, all our equations were invariant under coordinate redefinitions for σ and τ . In
any two-dimensional surface with a metric hαβ , one can rearrange the coordinates such
that

h12 = h21 = 0 ; h11 = −h22 , or: hαβ = ηαβeφ , (2.21)

where ηαβ is the flat Minkowski metric diag(−1, 1) on the surface, and eφ some conformal
factor. Since this factor cancels out in Eq. (2.18), the action in this gauge is the bilinear
expression

S = −1
2
T

∫
d2σ (∂αXµ)2 . (2.22)

Notice that in the light-cone coordinates σ± = 1√
2
(τ ±σ), where the flat metric ηαβ takes

the form

ηαβ = −
(

0 1
1 0

)
, (2.23)
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this action takes the form of Eq. (2.11). Now we still have to impose the constraints (2.10).
How do we explain these here? Well, it is important to note that the gauge condition
(2.21) does not fix the coordinates completely: we still have invariance under the group
of conformal transformations. They replace hαβ by a different world sheet metric of
the same form (2.21). We must insist that these transformations leave the action (2.18)
stationary as well. Checking the Euler-Lagrange equations δS/δhαβ = 0, we find the
remaining constraints. Keeping the notation of Green, Schwarz and Witten, we define
the world-sheet energy-momentum tensor Tαβ as

Tαβ = − 2π√
h

δS

δhαβ
. (2.24)

In units where T = 1
π
, we have

Tαβ = ∂αXµ∂βXµ − 1
2
hαβ(∂X)2 . (2.25)

In light-cone coordinates, where hαβ is proportional to Eq. (2.23), we have

T++ = (∂+Xµ)2 , T−− = (∂−Xµ)2 , T+− = T−+ = 0 . (2.26)

Demanding these to vanish is now seen as the constraint on our solutions that stems from
the field equations we had before requiring conformal invariance. They should be seen as
a boundary condition.

The solutions to the Euler-Lagrange equations generated by the Polyakov action (2.18)
is again (2.12), including the constraints (2.13).

3. Open and closed strings.

What has now been established is the local, classical equations of motion for a string.
What are the boundary conditions?

3.1. The Open string.

To describe the open string we use a spacelike coordinate σ that runs from 0 to π , and a
timelike coordinate τ . If we impose the conformal gauge condition, Eq. (2.21), we might
end up with a coordinate σ that runs from some value σ0(τ) to another, σ1(τ). Now,
however, consider the light-cone coordinates σ± = 1√

2
(σ ± τ). A transformation of the

form

σ+ → f+(σ+) , (3.1)

leaves the metric hαβ of the same form (2.21) with ηαβ of the form (2.23). It is not
difficult to convince oneself that this transformation, together with such a transformation
for σ− , can be exploited to enforce the condition σ0(τ) = 0 and σ1(τ) = π .
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In principle we now have two possibilities: either we consider the functions Xµ(σ, τ) at
the edges to be fixed (Dirichlet boundary condition), so that also the variation δXµ(σ, τ)
is constrained to be zero there, or we leave these functions to be free (Neumann boundary
condition). An end point obeying the Dirichlet boundary condition cannot move. It could
be tied onto an infinitely heavy quark, for instance. An end point obeying the Neumann
boundary condition can move freely, like a light quark. For the time being, this is the
more relevant case.

Take the action (2.22), and take an arbitrary infinitesimal variation δXµ(σ, τ). The
variation of the action is

δS = T
∫

dτ
∫ π

0
dσ (−∂σX

µ ∂σδX
µ + ∂τX

µ ∂τδX
µ) . (3.2)

By partial integration, this is

δS = T
∫

dτ
∫ π

0
dσ δXµ(∂2

σ − ∂2
τ )X

µ

+ T
∫

dτ
(
δXµ(0, τ)∂σX

µ(0, τ)− δXµ(π, τ)∂σX
µ(π, τ)

)
. (3.3)

Since this has to vanish for all choices of δXµ(σ, τ), we read off the equation of motion
for Xµ(σ, τ) from the first term, whereas the second term tells us that ∂σX

µ vanishes on
the edges σ = 0 and σ = π . This can be seen to imply that no momentum can flow in or
out at the edges, so that there is no force acting on them: the edges are free end points.

3.2. The closed string.

In the case of a closed string, we choose as our boundary condition:

Xµ(σ, τ) = Xµ(σ + π, τ) . (3.4)

Again, we must use transformations of the form (3.1) to guarantee that this condition
is kept after fixing the conformal gauge. The period π is in accordance with the usual
convention in string theory.

Exercise: Assuming the string world sheet to be timelike, check that we can impose the
boundary condition (3.4) on any closed string, while keeping the coordinate condition
(2.21), or, by using coordinate transformations exclusively of the form

σ+ → σ̃+(σ+) , σ− → σ̃−(σ−) . (3.5)

3.3. Solutions.

3.3.1. The open string.

For the open string, we write the solution (2.12) the following way:

Xµ(σ, τ) = Xµ
L(σ + τ) + Xµ

R(τ − σ) . (3.6)
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In Sect. 3.1, we saw that at the boundaries σ = 0 and σ = π the boundary condition is
∂σX

µ = 0. Therefore, we have

∂τX
µ
L(τ)− ∂τX

µ
R(τ) = 0 ; (3.7)

∂τX
µ
L(τ + π)− ∂τX

µ
R(τ − π) = 0 . (3.8)

The first of these implies that Xµ
L and Xµ

R must be equal up to a constant, but no
generality is lost if we put that constant equal to zero:

Xµ
R(τ) = Xµ

L(τ) . (3.9)

Similarly, the second equation relates Xµ
L(τ + π) to Xµ

R(τ − π). Here, we cannot remove
the constant anymore:

Xµ
L(τ + π) = Xµ

L(τ − π) + πuµ (3.10)

where uµ is just a constant 4-vector. This implies that, apart from a linear term, Xµ
L(τ)

must be periodic:

Xµ
L(τ) = 1

2
Xµ

0 + 1
2
τuµ +

∑
n

aµ
n e−inτ , (3.11)

and so we write the complete solution as

Xµ(σ, τ) = Xµ
0 + τuµ +

∑

n 6=0

aµ
n e−inτ 2 cos(nσ) . (3.12)

In Green, Schwarz and Witten, the coordinates

σ± = τ ± σ (3.13)

are used, and the conversion factor

` =
√

2α′ = 1/
√

πT . (3.14)

They also write the coefficients slightly differently. Let us adopt their notation:

Xµ
R(τ) = Xµ

L(τ) = 1
2
xµ + 1

2
`2pµτ +

i

2
`

∑

n 6=0

1

n
αµ

n e−inτ ; (3.15)

Xµ(σ, τ) = xµ + `2pµτ + i`
∑

n 6=0

1

n
αµ

n e−inτ cos nσ . (3.16)

3.3.2. The closed string.

The closed string boundary condition (3.4) is read as

Xµ(σ, τ) = Xµ(σ + π, τ) =

Xµ
L(σ + τ) + Xµ

R(τ − σ) = Xµ
L(σ + π + τ) + Xµ

R(τ − σ − π) . (3.17)
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We deduce from this that the function

Xµ
R(τ)−Xµ

R(τ − π) = Xµ
L(τ + π + 2σ)−Xµ

L(τ + 2σ) = C uµ (3.18)

must be independent of σ and τ . Choosing the coefficient C = 1
2
π , we find that, apart

from a linear term, Xµ
R(τ) and Xµ

L(τ) are periodic, so that they can be written as

Xµ
R(τ) = 1

2
uµτ +

∑
n

aµ
n e−2inτ ;

Xµ
L(τ) = 1

2
uµτ +

∑
n

bµ
n e−2inτ . (3.19)

So we have

Xµ(σ, τ) = Xµ
0 + uµ τ +

∑

n6=0

e−2inτ (aµ
n e−2inσ + bµ

n e2inσ) , (3.20)

where reality of Xµ requires

(aµ
n)∗ = aµ

−n ; (bµ
n )∗ = bµ

−n . (3.21)

Here, as in Eq. (3.12), the constant vector uµ is now seen to describe the total 4-velocity
(with respect to the τ coordinate), and Xµ

0 the c.m. position at t = 0. We shall use
Green-Schwarz-Witten notation:

Xµ = xµ + `2pµτ +
i

2
`

∑

n6=0

1

n
e−2inτ (αµ

n e2inσ + α̃µ
n e−2inσ) . (3.22)

It is important not to forget that the functions Xµ
R and Xµ

L must also obey the constraint
equations (2.10), which is equivalent to demanding that the energy-momentum tensor Tµν

in Eq. (2.26) vanishes.

From now on, we choose our units of time and space such that

` = 1 . (3.23)

3.4. The light-cone gauge.

The gauge conditions that we have imposed, Eqs.(2.10), still leave us with one freedom,
which is to reparametrize the coordinates σ+ and σ− :

σ+ → σ̃+(σ+) ; σ− → σ̃−(σ−) . (3.24)

For the closed string, these new coordinates may be chosen independently, as long as they
keep the same periodicity conditions (3.17). For the open string, we have to remember that
the boundary conditions mandate that the functions Xµ

L and Xµ
R are identical functions,

see Eq. (3.9); therefore, if σ̃+ = f(σ+) then σ̃− must be f(σ−) with the same function
f . The functions τ = 1

2
(σ+ + σ−) and σ = 1

2
(σ+ − σ−) therefore transform into

τ̃ = 1
2

(
f(τ + σ) + f(τ − σ)

)
;

σ̃ = 1
2

(
f(τ + σ)− f(τ − σ)

)
. (3.25)
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Requiring the boundary conditions for σ = 0 and for σ = π not to change under this
transformation implies that the function f(τ)− τ must be periodic in τ with period 2π ,
analogously to the variables Xµ

L , see Equ. (3.10). Comparing Eq. (2.12) with (3.25), we
see that we can choose τ̃ to be one of the Xµ variables. It is advisable to choose a lightlike
coordinate, which is one whose square in Minkowski space vanishes:

τ̃ = X+/u+ + constant (u+ = p+ , since ` = 1) . (3.26)

In a space-time with D dimensions in total, one defines

X± = (X0 ±XD−1)/
√

2 . (3.27)

We usually express this as

X+(σ, τ) = x+ + p+τ , (3.28)

which means that, in this direction, all higher harmonics α+
n vanish.

For the closed string, the left- and right moving components can be gauged separately.
Choosing the new coordinates σ̃ and τ̃ as follows:

σ̃+ = τ̃ + σ̃ =
2

p+
X+

L + constant , σ̃− = τ̃ − σ̃ =
2

p+
X+

R + constant , (3.29)

so that (3.26) again holds, implies Eq. (3.28), and therefore,

α+
n = α̃+

n = 0 (n 6= 0) . (3.30)

3.5. Constraints.

In this gauge choice, we can handle the constraints (2.10) quite elegantly. Write the
transverse parts of the X variables as

Xtr = (X1, X2, · · · , XD−2) . (3.31)

Then the constraints (2.10) read as

2∂+X+ ∂+X− = (∂+Xtr)2 ; 2∂−X+ ∂−X− = (∂−Xtr)2 . (3.32)

Now in the (τ, σ) frame, we have

∂+X+ = ∂+τ ∂τX
+ + ∂+σ ∂σX

+ = 1
2
(∂τ + ∂σ)X+ = 1

2
p+ ;

∂−X+ = 1
2
(∂τ − ∂σ)X+ = 1

2
p+ , (3.33)

so that

p+∂+X− = (∂+Xtr)2 = 1
4

(
(∂τ + ∂σ)Xtr

)2
;

p+∂−X− = (∂−Xtr)2 = 1
4

(
(∂τ − ∂σ)Xtr

)2
;

∂τX
− =

1

2p+

(
(∂τX

tr)2 + (∂σX
tr)2

)
;

∂σX
− =

1

p+
∂σX

tr ∂τX
tr . (3.34)
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3.5.1. for open strings:

Let us define the coefficients αµ
0 = pµ . Then we can write, see Eqs. (3.15) and (3.16),

∂τX
µ = ∂+Xµ + ∂−Xµ ; ∂σX

µ = ∂+Xµ − ∂−Xµ ; (3.35)

∂+Xµ = ∂+Xµ
L = 1

2

∑
n

αµ
n e−in(τ+σ) ;

∂−Xµ = ∂−Xµ
R = 1

2

∑
n

αµ
n e−in(τ−σ) , (3.36)

and the constraints (3.34) read as

∂+X− = 1
2

∑
n

α−n e−inσ+

= 1
4p+

∑
n,m

αtr
n αtr

m e−i(n+m)σ+

;

∂−X− = 1
2

∑
n

α−n e−inσ− = 1
4p+

∑
n,m

αtr
n αtr

m e−i(n+m)σ− . (3.37)

Both these equations lead to the same result for the α− coefficients:

α−n =
1

2p+

∑

k

αtr
k αtr

n−k =
1

2p+

∞∑

k=−∞

D−2∑

i=1

αi
k αi

n−k . (3.38)

Here we see the advantage of the factors 1/n in the definitions (3.16). One concludes
that (up to an irrelevant constant) X−(σ, τ) is completely fixed by the constraints. The
complete solution is generated by the series of numbers αi

n , where i = 1, · · · , D−2, for the
transverse string excitations, including αi

0 , the transverse momenta. There is no further
constraint to be required for these coefficients.

3.5.2. for closed strings:

In the case of the closed string, we define αµ
0 = α̃µ

0 = 1
2
pµ . Then Eq. (3.22) gives

∂+Xµ = ∂+Xµ
L =

∑
n αµ

n e−2in(τ+σ) ;

∂−Xµ = ∂−Xµ
R =

∑
n α̃µ

n e−2in(τ−σ) . (3.39)

Eq. (3.34) becomes

∂+X− = 1
p+ (∂+Xtr)2 = 1

p+

∑
n,m αtr

n αtr
m e−2i(n+m)σ+

∂−X− = 1
p+ (∂−Xtr)2 = 1

p+

∑
n,m α̃tr

n α̃tr
m e−2i(n+m)σ− . (3.40)

Thus, we get

α−n =
1

p+

∑

k

αtr
k αtr

n−k ; α̃−n =
1

p+

∑

k

α̃tr
k α̃tr

n−k . (3.41)
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3.6. Energy, momentum, angular momentum.

What are the total energy and momentum of a specific string solution? Consider a
piece of string, during some short time interval, where we have conformal coordinates σ
and τ . For a stationary string, at a point where the induced metric is given by ds2 =
C(σ, τ)2(dσ2 − dτ 2), the energy per unit of length is

P 0 =
∂p0

C∂σ
= T = T

∂X0

C∂τ
. (3.42)

Quite generally, one has

P µ = T
∂Xµ

∂τ
. (3.43)

Although this reasoning would be conceptually easier to understand if we imposed a
“time gauge”, X0 = Const · τ , all remains the same in the light-cone gauge. In chapter 4,
subsection 4.1 , we derive the energy-momentum density more precisely from the Lagrange
formalism.

We have

P µ
tot =

∫ π

0
P µdσ = T

∫ π

0

∂Xµ

∂τ
dσ = πT`2pµ , (3.44)

see Eq. (3.22). With the convention (3.14), this is indeed the 4-vector pµ .

We will also need the total angular momentum. For a set of free particles, counted by
a number A = 1, · · · , N , the covariant tensor is

Jµν =
N∑

A=1

(xµ
Ap ν

A − xν
Apµ

A) . (3.45)

In the usual 4 dimensional world, the spacelike components are easily recognized to be
εijkJk . The space-time components are the conserved quantities

J i0 =
∑

A

(xi
AEA − tpi

A) . (3.46)

For the string, we have

Jµν =
∫ π

0
dσ (XµP ν −XνP µ) = T

∫ π

0
dσ

(
Xµ ∂Xν

∂τ
−Xν ∂Xµ

∂τ

)
, (3.47)

and if here we substitute the solution (3.16) for the open string, we get

Jµν = xµp ν − xνpµ − i
∞∑

n=1

1

n
(αµ

−nαν
n − αν

−nα
µ
n) . (3.48)

The first part here describes orbital angular momentum. The second part describes the
spin of the string.

The importance of the momentum and angular momentum is that, in a quantum the-
ory, these will have to be associated to operators that generate translations and rotations,
and as such they will have to be absolutely conserved quantities.
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4. Quantization.

Quantization is not at all a straightforward procedure. The question one asks is, does a
Hilbert space of states |ψ〉 exist such that one can define operators Xµ(σ, τ) that allow
reparametrization transformations for the (σ, τ) coordinates. It should always be possible
to transform X0(σ, τ) to become the c-number τ itself, because time is not supposed to
be an operator, and this should be possible starting from any Lorentz frame, so as to
ensure lorentz invariance. It is not self-evident that such a procedure should always be
possible, and indeed, we shall see that often it is not.

There are different procedures that can be followed, all of which are equivalent. Here,
we do the light-cone quantization, starting from the light-cone gauge.

4.1. Commutation rules.

After fixing the gauge, our classical action was Eq. (2.22). Write

S =
∫

dτL(τ) ; L(τ) =
T

2

∫
dσ

(
(Ẋµ)2 − (Xµ′)2

)
= Ukin − V , (4.1)

where Ẋ stands for ∂X/∂τ and X ′ = ∂X/∂σ . This is the Lagrange function, and it is
standard procedure to define the momentum as its derivative with respect to Ẋµ . Here:

P µ = TẊµ . (4.2)

In analogy to conventional Quantum Mechanics, we now try the following commutation
rules:

[
Xµ(σ), Xν(σ′)

]
=

[
P µ(σ), P ν(σ′)

]
= 0

[
Xµ(σ), P ν(σ′)

]
= iη µνδ(σ − σ′) , (4.3)

where η µν = diag(−1, 1, · · · , 1). These should imply commutation rules for the parame-
ters xµ, pµ , αµ

n and α̃µ
n in our string solutions. Integrating over σ , and using

∫ π

0
cos mσ cos nσ dσ = 1

2
π δmn , m, n > 0 , (4.4)

we derive for the open string:

xµ =
1

π

∫ π

0
dσ Xµ(σ) ; pµ =

1

T`2π

∫ π

0
dσ P µ ;

αµ
n =

1

π`

∫ π

0
dσ cos nσ

(
P µ

T
− inXµ(σ)

)
;

αµ
−n = (αµ

n)† . (4.5)

For these coefficients then, Eqs. (4.3) yields the following commutation rules (assuming `
to be chosen as in (3.14)):

[ xµ, xν ] = [ pµ, p ν ] = 0 , [ xµ, p ν ] = iη µν ; (4.6)
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[ αµ
m, αν

n] =
1

π2`2T

∫ π

0
dσ cos mσ cos nσ (m− n) η µν = 0 if n, m > 0 ; (4.7)

[ αµ
m, αν

−n] =
1

π2`2T

∫ π

0
dσ cos mσ cos nσ (m + n) η µν = n δmnη µν . (4.8)

The equation (4.8) shows that (the space components of) αµ
n are annihilation opera-

tors:

[ αi
m, (α j

n)†] = n δmnδ
ij (4.9)

(note the unusual factor n here, which means that these operators contain extra nor-
malization factors

√
n , and that the operator (αi

n)†αi
n = nNi,n , where Ni,n counts the

number of excitations)

It may seem to be a reason for concern that Eqs. (4.6) include an unusual commutation
relation between time and energy. This however must be regarded in combination with
our constraint equations: starting with arbitrary wave functions in space and time, the
constraints will impose equations that correspond to the usual wave equations. This is
further illustrated for point particles in Green-Schwarz-Witten p. 19.

Thus, prior to imposing the constraints, we work with a Hilbert space of the following
form. There is a single (open or closed) string (at a later stage, one might compose states
with multiple strings). This single string has a center of mass described by a wave function
in space and time, using all D operators xµ (with pµ being the canonically associated
operators −iη µν∂/∂xν ). Then we have the string excitations. The non-excited string
mode is usually referred to as the ‘vacuum state’ | 0〉 (not to be confused with the space-
time vacuum, where no string is present at all). All string excited states are then obtained
by letting the creation operators (αi

n)† = αi
−n , n > 0 act a finite number of times on

this vacuum. If we also denote explicitly the total momentum of the string, we get states
|pµ, N1,1, N1,2, . . .〉 . It is in this Hilbert space that all xµ and pµ are operators, acting
on wave functions that can be any function of xµ .

4.2. The constraints in the quantum theory.

Now return to the constraint equations (3.38) for the open string and (3.41) for the closed
string in the light-cone gauge. In the classical theory, for n = 0, this is a constraint for
p− :

p− =
1

2p+

D−2∑

i=1


(pi)2 +

∑

m6=0

αi
−mαi

m


 . (4.10)

This we write as

M2 = 2p+p− −
D−2∑

i=1

(pi)2 = 2
D−2∑

i=1

∞∑

m=1

(αi
m)†αi

m + ? (4.11)

As we impose these constraints, we have to reconsider the commutation rules (4.6)
— (4.8). The constrained operators obey different commutation rules ; compare ordinary
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quantum mechanics: as soon as we impose the Schrödinger equation, ∂ψ/∂t = −iĤψ ,
the coordinate t must be seen as a c-number, and the Hamiltonian as some function of
the other operators of the theory, whose commutation rules it inherits. The commutation
rules (4.6) — (4.8) from now on only hold for the transverse parts of these operators, not
for the + and − components, the latter will have to be computed using the constraints.

Up to this point, we were not concerned about the order of the operators. However,
Eqs. (4.10) and (4.11) have really only been derived classically, where the order between
αi

m and (αi
m)† was irrelevant. Here, on the other hand, switching the order would produce

a constant, comparable to a ‘vacuum energy’. What should this constant here be? String
theorists decided to put here an arbitrary coefficient −2a :

M2 = 2


∑

i,n

nNi,n − a


 . (4.12)

Observe that: (i) the quantity α(M2) = 1
2
M2 + a is a non-negative integer. So, a is the

‘intercept’ α(0) of the trajectories (1.1) and (1.2) mentioned at the beginning of these
lectures. And (ii): 1

2
M2 increases by at least one unit whenever an operator (αi

n)† acts.
An operator (αi

n)† can increase the angular momentum of a state by at most one unit
(Wigner-Eckart theorem). Apparently, α′ = 1

2
in our units, as anticipated in Eq. (3.14),

as we had put ` = 1. It is now clear why the daughter trajectories are separated from
the leading trajectories by integer spacings.

At this point, a mysterious feature shows up. The lowest mass state, referred to as
| 0〉 , has 1

2
M2 = −a , and appears to be non-degenerate: there is just one such state. Let

us now count all first-excited states. They have 1
2
M2 = 1− a . The only way to get such

states is:

|i〉 = αi
−1| 0〉 ; i = 1, · · · , D − 2 . (4.13)

Because of the space-index i , these states transform as a vector in space-time. They
describe a ‘particle’ with spin 1. Yet they have only D − 2 components, while spin one
particles have D − 1 components (3 if space-time is 4 dimensional: if ` = 1, m = ±1 or
0) The only way to get a spin one particle with D−2 components, is if this state has mass
zero, like a photon. Gauge-invariance can then remove one physical degree of freedom.
Apparently, consistency of the theory requires a = 1. This however gives a ground state
of negative mass-squared: 1

2
M2 = −a = −1. The theory therefore has a tachyon. We

will have to live with this tachyon for the time being. Only super symmetry can remove
the tachyon, as we shall see in Chapter 12.

The closed string is quantized in subsection 4.4.

4.3. The Virasoro Algebra.

In view of the above, we use as a starting point the quantum version of the constraint.
For the open string:

α−n =
1

2p+


∑

i,m

: αi
n−mαi

m : −2aδn


 , (4.14)
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where the sum is over all m (including m = 0) and i = 1, · · · , D−2. The symbols :: stand
for normal ordering : c-numbers are added in such a way that the vacuum expectation
value of the operators in between is zero, which is achieved by switching the order of the
two terms if necessary (here: if m is negative and n − m positive). The symbol δn is
defined by

δn = 0 if n 6= 0 ; δ0 = 1 . (4.15)

Eqs. (4.7) and (4.8) are written as

[ αi
m, α j

n] = m δ ijδm+n . (4.16)

Using the rule

[AB, C] = [A, C]B + A[B, C] , (4.17)

we can find the commutation rules for α−n :

[ αi
m, α−n ] = mαi

m+n/p+ . (4.18)

More subtle is the derivation of the commutator of two α− . Let us first consider the
commutators of the quantity

L1
m = 1

2

∑

k

: α1
m−kα

1
k : ; [ α1

m, L1
n] = mα1

m+n . (4.19)

What is the commutator [L1
m, L1

n]? Note that: since the L1
m are normal-ordered, their

action on any physical state is completely finite and well-defined, and so their commutators
should be finite and well-defined as well. In some treatises one sees infinite and divergent
summations coming from infinite subtraction due to normal-ordering, typically if one
has an infinite series of terms that were not properly ordered to begin with. We should
avoid such divergent expressions. Indeed, the calculation of the commutator can be done
completely rigorously, but to do this, we have to keep the order of the terms in mind.
What follows now is the explicit calculation. It could be done faster and more elegantly if
we allowed ourselves more magic, but here we give priority to understanding the physics
of the argument.

Give the definition with the right ordering:

L1
m = 1

2

( ∑

k≥0

α1
m−k α1

k +
∑

k<0

α1
k α1

m−k

)
; (4.20)

[
L1

m, L1
n

]
= 1

2

( ∑

k≥0

[
α1

m−k, L1
n

]
α1

k +
∑

k≥0

α1
m−k

[
α1

k, L1
n

]

+
∑

k<0

[
α1

k, L1
n

]
α1

m−k +
∑

k<0

α1
k

[
α1

m−k, L1
n

] )
=

= 1
2

( ∑

k≥0

(m− k) α1
m+n−kα

1
k +

∑

k≥0

k α1
m−k α1

n+k

+
∑

k<0

k α1
k+n α1

m−k +
∑

k<0

(m− k) α1
k α1

m+n−k

)
. (4.21)
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If n + m 6= 0, the two α ’s in each term commute, and so their order is irrelevant. In that
case, we can switch the order in the last two terms, and replace the variable k by k − n
in terms # 2 and 3, to obtain

(4.21) = 1
2

∑

all k

(m− n) α1
m+n−k α1

k = (m− n)L1
m+n if m + n 6= 0 . (4.22)

If, however, m = −n , an extra contribution arises since we insist to have normal ordering.
Let us take m > 0 (in the other case, the argument goes the same way). Only in the
second term, the order has to be switched, for the values 0 ≤ k ≤ m . From (4.16), we
see that this give a factor m− k . Thus, we get an extra term:

+1
2

m∑

k=1

k(m− k) δm+n . (4.23)

Now use

m∑

1

k = 1
2
m(m + 1) ,

m∑

1

k2 = 1
6
m(m + 1)(2m + 1) , (4.24)

to obtain

(4.23) = 1
4
m2(m + 1)− 1

12
m(m + 1)(2m + 1) = 1

12
m(m + 1)(m− 1) . (4.25)

Thus, one obtains the Virasoro algebra:

[L1
m, L1

n] = (m− n)L1
m+n + 1

12
m(m2 − 1) δm+n , (4.26)

a very important equation for field theories in a two-dimensional base space. Now, since
α−n = (

∑
i L

i
n − aδn)/p+ , where i takes D − 2 values, their commutator is

[
α−m, α−n

]
=

m− n

p+
α−m+n +

δm+n

p+2

(
D−2
12

m(m2 − 1) + 2ma
)

. (4.27)

To facilitate further calculations, let me give here the complete table for the commu-
tators of the coefficients αµ

n , xµ and pµ (as far as will be needed):
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[X, Y ] xi x− pi p+ p− αi
m α−m

X
→

xj 0 0 −iδ ij 0 −i p j/p+ −i δ ijδm −i α j
m/p+

x− 0 0 0 i −ip−/p+ 0 −i α−m/p+

p j i δ ij 0 0 0 0 0 0

p+ 0 −i 0 0 0 0 0

p− ipi/p+ ip−/p+ 0 0 0 mαi
m/p+ mα−m/p+

α j
n i δ ijδn 0 0 0 −nα j

n/p+ mδ ijδm+n −nα j
m+n/p

+

α−n i αi
n/p+ i α−n /p+ 0 0 −nα−n /p+ mαi

m+n/p+ ? ?

Y ↓

? ? =
m− n

p+
α−m+n +

(
D−2
12

m(m2 − 1) + 2am
)

δm+n

(p+)2

One may wonder why p− does not commute with xi and x− . This is because we first
impose the constraints and then consider the action of p− , which now plays the role of a
Hamiltonian in Quantum mechanics. xi and x− are time dependent, and so they do not
commute with the Hamiltonian.

4.4. Quantization of the closed string

The closed string is described by Eq. (3.22), and here we have two constraints of the
form (3.36), one for the left-movers and one for the right movers. The classical alpha
coefficients (with αµ

0 = α̃µ
0 = 1

2
pµ ), obey Eqs. (3.41). In the quantum theory, we have

to pay special attention to the order in which the coefficients are multiplied; however, if
n 6= 0, the expression for α−n only contains terms in which the two alphas commute, so
we can copy the classical expressions without ambiguity to obtain the operators:

α−n =
1

p+

+∞∑

k=−∞

D−2∑

i=1

αi
kα

i
n−k

α̃−n =
1

p+

+∞∑

k=−∞

D−2∑

i=1

α̃i
kα̃

i
n−k

if n 6= 0 . (4.28)

A similar quantization procedure as for open strings yields the commutation relations

[xµ, pν ] = −ηµν ; [αi
m, αj

n] = [α̃i
m, α̃j

n] = mδm+nδij ; [α̃µ
n, αν

m] = 0 . (4.29)
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As for the zero modes, it is important to watch the order in which the α ’s are written.
Our expressions will only be meaningful if, in the infinite sum, creation operators appear
at the left and annihilation operators at the right, otherwise all terms in the sum give
contributions, adding up to infinity. As in Eq. (4.12), we assume that, after normal
ordering of the α ’s, finite c-numbers a and ã remain:

α−0 = 1
2
p− =

1

p+

D−2∑

i=1

(
αi

0α
i
0 +

∑

k>0

αi
−kα

i
k +

∑

k<0

αi
kα

i
−k − 2a

)
=

=
1

p+

D−2∑

i=1

(
αi

0α
i
0 + 2

∑

k>0

αi
−kα

i
k − 2a

)
, (4.30)

and similarly for the right-movers. So now we have:

M2 = 2p+p− − (ptr)2 = 8

(
D−2∑

i=1

∞∑

m=1

(αi
m)†αi

m − a

)
= 8

(
D−2∑

i=1

∞∑

m=1

(α̃i
m)†α̃i

m − ã

)
. (4.31)

4.5. The closed string spectrum

We start by constructing a Hilbert space using a vacuum | 0〉 that satisfies

αi
m| 0〉 = α̃i

m| 0〉 = 0 , ∀m > 0 . (4.32)

The mass of such a state is

M2| 0〉 = 8(−a)| 0〉 = 8(−ã)| 0〉 , (4.33)

so we must require: a = ã . Let us try to construct the first excited state:

| i〉 ≡ αi
−1| 0〉 . (4.34)

Its mass is found as follows:

M2| i〉 = 8
( D−2∑

j=1

∞∑

m=1

(αj
m)†αj

m − a
)
αi
−1| 0〉

= 8
D−2∑

j=1

(αj
1)
†[αj

1, αi
−1]| 0〉 − a| i〉

= 8| i〉 − 8a| i〉 = 8(1− a)| i〉 → M2 = 8(1− a) . (4.35)

However, there is also the constraint for the right-going modes:

M2| i〉 = 8
( D−2∑

j=1

∞∑

m=1

(α̃j
m)†α̃j

m − a
)
| i〉

= −8a| i〉 → M2 = −8a . (4.36)

This is a contradiction, and so our vector state does not obey the constraints; it is not an
element of our Hilbert space.
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The next state we try is the tensor state | i, j〉 ≡ αi
−1α̃

j
−1| 0〉 . We now find that it

does obey both constraints, which both give:

M2 = 8(1− a) . (4.37)

However, it transforms as a (D− 2)× (D− 2) representation of the little group, being the
group of only rotations in D− 2 dimensions. For the open string, we found that this was
a reason for the ensuing vector particle to be a photon, with mass equal to zero. Here,
also, consistency requires that this tensor-particle is massless. The state | ij〉 falls apart
in three irreducible representations:

• an antisymmetric state: |[ij]〉 = −|[j i]〉 = | ij〉 − | j i〉 ,

• a traceless symmetric state: | {ij}〉 = | ij〉+ | j i〉 − 2
D−2

δij| kk〉 ,

• and a trace part: | s〉 = | kk〉 .

The dimensionality of these states is:
1
2
(D − 2)(D − 3) for the antisymmetric state (a rank 2 form),

1
2
(D − 2)(D − 1)− 1 for the symmetric part (the ”graviton” field), and

1 for the trace part (a scalar particle, called the ”dilaton”).
There exist no massive particles that could transform this way, so, again, we must impose
M = 0, implying a = 1 for the closed string. The massless antisymmetric state would be
a pseudoscalar particle in D = 4; the symmetric state can only describe something like
the graviton field, the only spin 2 tensor field that is massless and has 1

2
· 2 · 3 − 1 = 2

polarizations. We return to this later.

5. Lorentz invariance.

An alternative way to quantize the theory is the so-called covariant quantization, which
is a scheme in which Lorentz covariance is evident at all steps. Then, however, one finds
many states which are ‘unphysical’; for instance, there appear to be D − 1 vector states
whereas we know that there are only D− 2 of them. Quantizing the system in the light-
cone gauge has the advantage that all physically relevant states are easy to identify, but
the price we pay is that Lorentz invariance is not easy to establish, since the τ coordinate
was identified with X+ . Given a particular string state, what will it be after a Lorentz
transformation?

Just as the components of the angular momentum vector are the operators that gen-
erate an infinitesimal rotation, so we also have operators that generate a Lorentz boost.
Together, they form the tensor Jµν that we derived in Eq. (3.48). The string states, with
all their properties that we derived, should be a representation of the Lorentz group. What
this means is the following. If we compute the commutators of the operators (3.48), we
should get the same operators at the right hand side as what is dictated by group theory:

[ pµ, p ν ] = 0 ; (5.1)
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[ pµ, Jν%] = −iη µνp % + iη µ%p ν ; (5.2)[
Jµν , J%λ

]
= −iη ν%Jµλ + iη µ%Jνλ + iη νλJµ% − iη µλJν% (5.3)

(where we included the momentum operators, so this is really the Poincaré group). For
most of these equations it is evident that these equations are right, but for the generators
that generate a transformation that affects x+ , it is much less obvious. This is because
such transformations will be associated by σ, τ transformations. The equations that
require explicit study are the ones involving J i− . Writing

Jµν = `µν + Eµν ; `µν = xµp ν − xνpµ ;

Eµν = −i
∞∑

n=1

1

n
(αµ

−nα
ν
n − αν

−nα
µ
n) , (5.4)

enables us to check these commutation relations using the Commutator Table of Sec-
tion 4.3. If the theory is Lorentz invariant, these operators, which generate infinitesimal
Lorentz rotations, automatically obey the commutation rules (5.2) and (5.3). However,
since we introduced the c-numbers in the commutation rules by hand, it is far from obvious
whether this is indeed the case. In particular, we should check whether

[
p−, J j−] ?

= 0 , (5.5)
[
J i−, J j−] ?

= 0 . (5.6)

Before doing this, one important remark: The definition of J i− contains products of
terms that do not commute, such as xip− . The operator must be Hermitian, and that
implies that we must correct the classical expression (3.48). We remove its anti-Hermitean
part, or, we choose the symmetric product, writing 1

2
(xip−+p−xi), instead of xip− . Note,

furthermore, that x+ is always a c-number, so it commutes with everything.

Using the Table, one now verifies that the `µν among themselves obey the same
commutation rules as the Jµν . Using (4.17), one also verifies easily that

[ p−, ` j−] = 0 , and [ p−, Ej−] = 0 . (5.7)

We strongly advise the reader to do this exercise, bearing the above symmetrization
procedure in mind. Remains to prove (5.6). This one will turn out to give complications.

Finding that

[ xi, Ej−] = −iE ij/p+ , [ x−, E j−] = iE j−/p+ , (5.8)

and [ p−, E j−] = 0 , [ pi, E j−] = 0 , (5.9)

we get

[ ` i−, E i−] = −iE ijp−/p+ − iE j−p i/p+ , (5.10)

and so a short calculation gives

[J i−, J j−] = (−2iE ijp− + iE i−p j − iE j−p i)/p+ + [E i−, E j−] . (5.11)
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To check whether this vanishes, we have to calculate the commutator [E i−, E j−] ,
which is more cumbersome. The calculations that follow now are done exactly in the
same way as the ones of the previous chapter: we have to keep the operators in the right
order, otherwise we might encounter intermediate results with infinite c-numbers. We can
use the result we had before, Eq. (4.27). An explicit calculation, though straightforward,
is a bit too bulky to be reproduced here in all detail, so we leave that as an exercise. An
intermediate result is:

[E i−, α−m] =
i

p+
(p iα−m − p−αi

m) +
i

p+

∑

k>0

m

k

(
αi
−kα

−
m+k − α−m−kα

i
k

)
+

+
i

(p+)2

(
m(m− 1)

2
− R(m)

m

)
α−m , if m 6= 0 , (5.12)

where R(m) is the expression occurring in the commutator (4.27):

R(m)

m
= D−2

12
(m2 − 1) + 2a . (5.13)

Finally, one finds that nearly everything in the commutator (5.11) cancels out, but
not quite. It is the c-numbers in the commutator list of subsection 4.3 that give rise to a
residual term:

[J i−, J j−] = − 1

(p+)2

∞∑

m=1

∆m

(
αi
−mαj

m − αj
−mαi

m

)
,

∆m = −R(m)

m2
+ 2m = 26−D

12
m +

(
D−2
12

− 2a
) 1

m
. (5.14)

Insisting that this should vanish implies that this theory only appears to work if the
number D of space-time dimensions is 26, and a = 1; the latter condition we already
noticed earlier.

6. Interactions and vertex operators.

The simplest string interaction is the process of splitting an open string in two open
strings and the reverse, joining two open strings at their end points. With the machinery
we have now, a complete procedure is not yet possible, but a first attempt can be made.
We consider one open string that is being manipulated at one end point, say the point
σ = 0. In the light-cone gauge, the Hamiltonian p− receives a small perturbation

H int =
∑

kµ

ε(k) e−ik−X+−ik+X−+iktrXtr

, (6.1)

where Xµ stands for Xµ(τ, 0), τ = X+/p+ . What will be the transitions caused by such
a perturbation?

For this, one uses standard perturbation theory. The first order correction is written
as

〈out|
∫

H int(τ)dτ | in〉 , (6.2)
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but this amplitude does not teach us very much — only those matrix elements where k− in
H int matches the energy difference between the in-state and the out-state, contribute. Of
more interest is the second order correction, because this shows a calculable dependence
on the total momentum exchanged.

The second order coefficient describing a transition from a state | in〉 to a state | out〉
is, up to some kinematical factors, the amplitude

∫ ∞

−∞
dτ 1

∫ ∞

0
dτ〈out|H int(τ 1 + τ) H int(τ 1)| in〉 , (6.3)

where the Heisenberg notation is used in expressing the time dependence of the interaction
Hamiltonian. We are interested in the particular contribution where the initial state has
momentum kµ

4 , the first insertion of H int goes with the Fourier coefficient eikµ
3 Xµ

, the
second insertion with Fourier coefficient eikµ

2 Xµ
, and the final state has momentum −kµ

1

(we flipped the sign here so that all momenta kµ
i now will refer to ingoing amounts of

4-momentum, as will become evident shortly). For simplicity, we take the case that the
initial string and the final string are in their ground state. Thus, what we decide to
compute is the amplitude

A =
∫ ∞

−∞
dτ 1

∫ ∞

0
dτ out〈0, −k1| eikµ

2 Xµ(τ1+τ, 0) eikµ
3 Xµ(τ1, 0)| 0, k4〉in . (6.4)

It is to be understood that, eventually, one has to do the integral
∫

d4k2

∫
d4k3 ε(k2)ε(k3)A .

We now substitute the formula for Xµ(τ, 0), using Eq. (3.16):

Xµ(τ, 0) = xµ + pµτ +
∑

n6=0

i

n
αµ

n e−inτ . (6.5)

However, there is a problem: Xµ contains pieces that do not commute. In particular, the
expressions for X− give problems, since it contains α−n , which is quadratic in the αi

m ,
and as such obeys the more complicated commutation rules. We simplify our problem by
limiting ourselves to the case k± = 0. Thus, kµ

2 and kµ
3 only contain ktr components. It

simplifies our problem in another way as well: H int now does not depend on x− , so that
p+ is conserved. Therefore, we may continue to treat p+ as a c-number.

Xtr contain parts that do not commute:

[ αi
m, αj

n] = mδijδm+n , (6.6)

but what we have at the right hand side is just a c-number. Now, since we insist we want
only finite, meaningful expressions, we wish to work with sequences of αi

n operators that
have the annihilation operators (n > 0) to the right and creation operators (n < 0) to
the left. We can write

X i(τ, 0) = xi + piτ + Ai + Ai† , (6.7)

where Ai contains the annihilation operators (n > 0) and Ai† the creation operators.
Within each of these four terms there are quantities that all commute, but one term does
not commute with all others. The commutators are all c-numbers.
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Operators A and B whose commutator is a c-number, obey the following equations:

eA+B = eA eB e
1
2
[B,A] = eB eA e−

1
2
[B,A] (6.8)

One can prove this formula by using the Campbell-Baker Hausdorff formula, which ex-
presses the remainder as an infinite series of commutators; here the series terminates
because the first commutator is a c-number, so that all subsequent commutators in the
series vanish. One can also prove the formula in several other ways, for instance by series
expansions. Thus, we can write the transverse contributions to our exponentials as

eiktrXtr

= eiktr(Atr)† · eiktrAtr · eiktrxtr−1
2
(ktr)2 [A, A†] . (6.9)

The last exponent is just a c-number, and the first two are now in the correct order. The
point to be stressed here is that the c-number diverges:

[A, A†] =
∑

n,m>0

[
i

m
αm,

−i

n
α−n] =

∞∑

n=1

1

n
, (6.10)

so we should not have started with the Hamiltonian (6.1), but with one where the expo-
nentials are normal-ordered from the start:

H int =
∑

kµ

ε(k) e−ikµxµ+iktrAtr†
eiktrAtr

; (6.11)

we simply absorb the divergent c-number in the definition of ε(k). Finally, we use the
same formula (6.8) to write

eiktr(xtr+ptrτ) = eiktrptrτ eiktrxtr

e−
1
2

i(ktr)2τ (6.12)

(Note that, here, ktr are c-numbers, whereas xtr and ptr are operators)

Using the fact that

〈0|A† = 0 → 〈0| eiktrAtr†
= 〈0| and A | 0〉 = 0 → eiktrAtr| 0〉 = | 0〉 , (6.13)

Eq. (6.4) now becomes

A =
∫ ∞

−∞
dτ 1

∫ ∞

0
dτ out〈0, −k1| eiktr

2 ptr(τ1+τ) eiktr
2 xtr

e−
1
2
i(ktr

2 )2(τ1+τ) eiktr
2 Atr(τ1+τ)

eiktr
3 Atr(τ1)† e

1
2
i(ktr

3 )2τ1

eiktr
3 xtr

eiktr
3 ptrτ1| 0, k4〉in . (6.14)

Again, using (6.13), together with (6.8), we can write

〈0| eiktr
2 Atr(τ1+τ) eiktr

3 Atr(τ1)† | 0〉 = e−(ki
2kj

3)[Ai(τ1+τ), Aj(τ1)†] , (6.15)

where the commutator is

[Ai(τ), Aj(0)†] =
∞∑

n=1

e−inτ 1
n

δij = − ln(1− e−iτ )δij , (6.16)
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so that (6.15) becomes

(1− e−iτ ) ktr
2 ktr

3 . (6.17)

Since the initial state is a momentum eigen state, the operator ptr just gives the momen-
tum −ktr

1 , whereas the operator eik3x replaces k4 by k4 + k3 . We end up with

A = δD−2(k1 + k2 + k3 + k4)
∫ ∞

−∞
dτ 1

∫ ∞

0
dτ

e−i(ktr
1 ktr

2 )(τ1+τ)− 1
2
i(ktr

2 )2(τ1+τ)(1− e−iτ ) ktr
2 ktr

3 e
1
2
i(ktr

3 )2τ1+iktr
3 ktr

4 τ1

. (6.18)

The integral over τ 1 (in a previous version of the notes it was conveniently ignored,
putting τ 1 equal to zero) actually gives an extra Dirac delta:

δ
(
− ktr

1 ktr
2 − 1

2
(ktr

2 )2 + 1
2
(ktr

3 )2 + ktr
3 ktr

4

)
=

δ
(

1
2
(ktr

1 )2 − 1
2
(ktr

1 + ktr
2 )2 + 1

2
(ktr

3 + ktr
4 )2 − 1

2
(ktr

4 )2
)

. (6.19)

Since states (1) and (4) are ground states, M2
1 = M2

4 , and momentum conservation implies
that the entry of the delta function reduces to p+(k−1 + k−4 ). This is the delta function
enforcing momentum conservation in the −-direction.

The remaining integral,
∫ ∞

0
dτ e−

1
2
i(ktr

2 )2τ−i(ktr
1 ktr

2 )τ (1− e−iτ ) ktr
2 ktr

3 , (6.20)

does not change if we let τ run from 0 to −i∞ instead of ∞ , and writing

e−iτ = x , dτ =
idx

x
, (6.21)

we see that the integral in (6.18) is

i
∫ 1

0
dx x ktr

1 ktr
2 + 1

2
(ktr

2 )2−1(1− x)ktr
2 ktr

3 . (6.22)

Let us use the Mandelstam variables2 s and t of Eqs. (1.10) and (1.11), noting that

k1k2 = 1
2

(
(k1 + k2)

2 − k2
1 − k2

2

)
= 1

2
(−s− k2

1 − k2
2) ;

k2k3 = 1
2
(−t− k2

2 − k2
3) , (6.23)

to write (6.22) as

iB
(

1
2
(−s− k2

1),
1
2
(−t− k2

2 − k2
3 + 1)

)
, (6.24)

where B is the beta function, Eq. (1.18). This is exactly the Veneziano formula (1.14),
provided that α(s) = 1

2
s + a , 1

2
k2

1 = a , and 1
2
(k2

2 + k2
3) = 1 + a . If we put a = 1 and

all external momenta in the same ground state, we recover Veneziano’s formula exactly.
The derivation may seem to be lengthy, but this is because we carefully went through all
the details. It is somewhat awkward that we had to put k+

2 = k+
3 = 0, but, since the

final answer is expected to be Lorentz invariant, it is reasonable to expect it to be more
generally valid. It is a very important feature of string theory that the answers only make
sense as long as the external states are kept on mass shell.

2Note that the signs of the momenta are defined differently.

30



7. BRST quantization.

Modern quantization techniques often start with the functional integral. When setting
this up, it usually looks extremely formal, but upon deeper studies the methods turn out
to be extremely powerful, enabling one to find many different, but completely equivalent
quantum mechanical expressions. In these proofs, one now uses Becchi-Rouet-Stora-
Tyutin symmetry, which is a super symmetry. We here give a brief summary.

The action S of a theory is assumed to contain a piece quadratic in the field variables
Ai(x), together with complicated interaction terms. In principle, any quantum mechanical
amplitude can be written as a functional integral over ‘field configurations’ Ai(~x, t) and
an initial and a final wave function:

A =
∫
DAi(~x, t)〈Ai(~x, T ) | e−iS(A(~x,t)) |Ai(~x, 0)〉 , (7.1)

which is written as
∫ DAe−iS for short. However, if there is any kind of local gauge

symmetry for which the action is invariant (such as in QED, Yang Mills theory or General
Relativity), which in short-hand looks like

A(x) → Ω(x)A(x) , (7.2)

then there are gauge orbits, large collections of field configurations Ai(~x, t), for which the
total action does not change. Along these orbits, obviously the functional integral (7.1)
does not converge. In fact, we are not interested in doing the integrals along such orbits,
we only want to integrate over states which are physically distinct. This is why one needs
to fix the gauge.

The simplest way to fix the gauge is by imposing a constraint on the field config-
urations. Suppose that the set of infinitesimal gauge transformations is described by
‘generators’ Λa(x), where the index a can take a number of values (in YM theories: the
dimensionality of the gauge group; in gravity: the dimensionality D of space-time, in
string theory: 2 for the two dimensions of the string world sheet, plus one for the Weyl
invariance). One chooses functions fa(x), such that the condition

fa(x) = 0 (7.3)

fixes the choice of gauge — assuming that all configurations can be gauge transformed
such that this condition is obeyed. Usually this implies that the index a must run over
as many values as the index of the gauge generators.

In perturbation expansion, we assume fa(x) at first order to be a linear function of
the fields Ai(x) (and possibly its derivatives). Also the gauge transformation is linear at
lowest order:

Ai → Ai + T̂ a
i Λa(x) , (7.4)

where Λa(x) is the generator of infinitesimal gauge transformations and T̂ a
i may be an

operator containing partial derivatives. If the gauge transformations are also linear in
first order, then what one requires is that the combined action,

fa(A, x) → fa(A + T̂ Λ, x) = fa(x) + m̂b
a Λb(x) , (7.5)
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is such that the operator m̂b
a has an inverse, (m̂−1)b

a . This guarantees that, for all A , one
can find a Λ that forces f to vanish.

However, m̂ might have zero modes. These are known as the Faddeev-Popov ghosts.
Subtracting a tiny complex number, iε from m̂ , removes the zero modes, and turns the
Faddeev Popov ghosts into things that look like fields associated to particles, hence the
name. Now let us be more precise.

What is needed is a formalism that yields the same physical amplitudes if one replaces
one function fa(x) by any other one that obeys the general requirements outlined above.
In the functional integral, one would like to impose the constraint fa(x) = 0. The
amplitude (7.1) would then read

A ?
=

∫
DAε−iS δ(fa(x)) , (7.6)

but this would not be insensitive to transitions to other choices of fa . Compare a simple
ordinary integral where there is invariance under a rotation of a plane:

A ?
=

∫
d2~x d2~y F (|x|, | y|) δ(x1) . (7.7)

Here, the ‘gauge-fixing function’ f(~x, ~y) = x1 removes the rotational invariance. Of course
this would yield something else if we replaced f by y1 . To remove this failure, one must
add a Jacobian factor:

A =
∫

d2~x d2~y F (|x|, | y|) |x| δ(x1) . (7.8)

The factor | x| arises from the consideration of rotations over an infinitesimal angle θ :

x1 → x1 − x2θ , x1 = 0 ; |x2| = | x| . (7.9)

This way, one can easily prove that such integrals yield the same value if the gauge
constraint were replaced, for instance, by | y| δ(y1). The Jacobian factors are absolutely
necessary.

Quite generally, in a functional integral with gauge invariance, one must include the
Jacobian factor

∆ = det (∂fa(x)/∂Λb(y)) . (7.10)

If all operators in here were completely linear, this would be a harmless multiplicative
constant, but usually, there are interaction terms, or ∆ may depend on crucial parameters
in some other way. How does one compute this Jacobian?

Consider an integral over complex variables φa :
∫

dφadφa∗
∫

e−φa∗Mb
aφb . (7.11)

The outcome of this integral should not depend on unitary rotations of the integrand φa .
Therefore, we may diagonalize the matrix M :

M b
aφ

(i)
b = λ(i)φ(i)

a . (7.12)
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One then reads off the result:

Eq. (7.11) =
∏

(i)

( 2π

λ(i)

)
= C (det(M))−1 = C exp(Tr log M) , (7.13)

where C now is a constant that only depends on the dimensionality of M and this usually
does not depend on external factors, so it can be ignored (Note that the real part and the
imaginary part of φ each contribute a square root of the eigenvalue λ). The advantage
of the expression (7.11) is that it has exactly the same form as other expressions in the
action, so computing it in practice goes just like the computation of the other terms. We
obtained the inverse of the determinant, but that causes no difficulty: we add a minus
sign for every contribution of this form whenever it appears in an exponential form:

det(M)−1 = exp(−Tr log M) . (7.14)

Alternatively, one can observe that such minus signs emerge if we replace the bosonic
‘field’ φa(x) by a fermionic field ηa(x):

det(M) =
∫
DηDη̄ exp(η̄aM b

aηb) . (7.15)

Indeed, this identity can be understood directly if one knows how to integrate over an-
ticommuting variables (called Grassmann variables) ηi , which are postulated to obey
ηi ηj = −ηj ηi :

∫
dη 1 = 0 ;

∫
dη η = 1 . (7.16)

For a single set of such anticommuting variables η, η̄ , one has

η2 = 0 ; η̄2 = 0 ; exp(η̄Mη) = 1 + η̄Mη ;
∫

dηdη̄(1 + η̄Mη) = M . (7.17)

In a gauge theory, for example, one has

Aa
µ → Aa

µ + DµΛa ; DµX
a = ∂µX

a + gεabcA
b
µX

c ; (7.18)

fa(x) = ∂µA
a
µ(x) ;

fa → fa + ∂µDµΛa ; (7.19)

∆ =
∫
Dη(x)Dη̄(x) exp(η̄a ∂µDµηa(x)) . (7.20)

The last exponential forms an addition to the action of the theory, called the Faddeev-
Popov action. Let us formally write

S = Sinv(A) + λa(x)fa(x) + η̄
∂f

∂Λ
η . (7.21)

Here, λa(x) is a Lagrange multiplier field, which, when integrated over, enforces fa(x) →
0. In gauge theories, infinities may occur that require renormalization. In that case, it is
important to check whether the renormalization respects the gauge structure of the theory.
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By Becchi, Rouet and Stora, and independently by Tyutin, this structure was discovered
to be a symmetry property relating the anticommuting ghost field to the commuting gauge
fields: a super symmetry. It is the symmetry that has to be respected at all times:

δAa(x) = ε̄
∂Aa(x)

∂Λb(x′)
ηb(x′) ; (7.22)

δηa(x) = 1
2
ε̄fabcηb(x) ηc(x) ;

δη̄a(x) = −ε̄λa(x) ;
δλa(x) = 0 . (7.23)

Here, fabc are the structure constants of the gauge group:

[Λa, Λb](A) = fabcΛc(A) (7.24)

ε̄ is infinitesimal. Eq. (7.22) is in fact a gauge transformation generated by the infinites-
imal field ε̄η .

8. The Polyakov path integral. Interactions with closed strings.

Two closed strings can meet at one point, where they rearrange to form a single closed
string, which later again splits into two closed strings. This whole process can be seen as
a single sheet of a complicated form, living in space-time. The two initial closed strings,
and the two final ones, form holes in a sheet which otherwise would have the topology of a
sphere. If we assume these initial and final states to be far separated from the interaction
region, we may shrink these closed loops to points. Thus, the amplitude of this scattering
process may be handled as a string world sheet in the form of a sphere with four points
removed. These four points are called ‘vertex insertions’.

More complicated interactions however may also take place. Strings could split and
rejoin several times, in a process that would be analogous to a multi-loop Feynman dia-
gram in Quantum Field Theory. The associated string world sheets then take the form
of a torus or sheets with more complicated topology: there could be g splittings and
rejoinings, and the associated world sheet is found to be a closed surface of genus g .

The Polyakov action is

S(h,X) = −T

2

∫
d2σ

√
hhαβ∂αXµ∂βXµ . (8.1)

To calculate amplitudes, we want to use the partition function

Z =
∫
DhDX e−S(h,X) , (8.2)

The conformal factor (the overall factor eφ(σ1,σ2) ), is immaterial as it cancels out in the
action (8.1). A constraint such as

det(h) = 1 , (8.3)
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can be imposed without further consequences (we simply limit ourselves to variables hαβ

with this property, regardless the choice of coordinates).

But we do want to fix the reparametrization gauge, for instance by using coordinates
σ+ and σ− , and imposing h++ = h−− = 0. It is here that we can use the BRST procedure.
If we would insert (as was done in the previous sections)

1 =
∫
Dh++Dh−− δ(h++) δ(h−−) , (8.4)

we would find it difficult to check equivalence with other gauge choices, particularly if the
topology is more complicated than the sphere.

To check the equivalence with other gauge choices, one should check the contribution
of the Faddeev-Popov ghost, see the previous section. The general, infinitesimal local
coordinate transformation on the world sheet is

σα → σα + ξα , f(σ) → f(σ) + ξ+ ∂+f + ξ− ∂−f . (8.5)

As in General relativity, a co-vector φα(σ) is defined to be an object that transforms just
like the derivative of a scalar function f(σ):

∂βf(σ) → ∂βf(σ) + ξλ∂λ ∂βf + (∂βξλ)∂λf ;

φβ(σ) → φβ(σ) + ξλ∂λφβ + (∂βξλ)φλ . (8.6)

The metric hαβ is a co-tensor, which means that it transforms as the product of two
co-vectors, which we find to be

hαβ(σ) → hαβ(σ) + ξλ∂λhαβ + (∂αξλ)hλβ + (∂βξλ)hαλ . (8.7)

As in General Relativity, the co-variant derivative of a vector field φα(σ) is defined as

∇αφβ ≡ ∂αφβ − Γγ
αβ φγ ; Γγ

αβ = 1
2
hγδ{∂αhβδ + ∂βhαδ − ∂δhαβ} . (8.8)

This definition is carefully arranged in such a way that ∇αφβ also transforms as a co-
tensor, as defined in Eq. (8.7).

The metric hαβ is a special co-tensor. It so happens that the derivatives in Eq. (8.7),
together with the other terms, can be rearranged in such a way that they are themselves
written as covariant derivatives of ξα = hαβξβ :

hαβ → hαβ + δhαβ ; δhαβ = ∇αξβ +∇βξα . (8.9)

The determinant h of hαβ transforms as

δh = 2hhαβ∇αξβ , (8.10)

and since we restrict ourselves to tensors with determinant one, Eq. (8.3), we have to
divide hαβ by

√
h . This turns the transformation rule (8.9) into

δhαβ = ∇αξβ +∇βξα − hαβhγκ∇γξκ . (8.11)
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Since the gauge fixing functions in Eq. (8.4) are h++ and h−− , our Faddeev-Popov
ghosts will be the ones associated to the determinant of ∇± in

δh++ = 2∇+ξ+ δh−− = 2∇−ξ− , (8.12)

while δh+− = 0 . So, we should have fermionic fields c±, b++, b−− , described by an extra
term in the action:

LF.−P = −T

2

∫
d2σ{∂αXµ ∂αXµ + 2b++∇+c+ + 2b−−∇−c− } . (8.13)

In Green, Schwarz & Witten, the indices for the c ghost is raised, and those for the b
ghost are lowered, after which they interchange positions3 So we write

LF.−P = −T

2

∫
d2σ{∂αXµ ∂αXµ + 2c−∇+b−− + 2c+∇−b++} . (8.14)

The addition of this ghost field improves our formalism. Consider for instance the con-
straints (3.32), which can be read as T++ = T−− = 0 . Since the α coefficients are the
Fourier coeeficients of ∂±Xµ , we can write these conditions as

( D∑

µ=1

Lµ
m

)
|ψ〉 ?

= 0 , (8.15)

where the coefficients Lµ
m are defined in Eq. (4.19). States |ψ〉 obeying this are then

“physical states”. Now, suppose that we did not impose the light-cone gauge restriction,
but assume the unconstrained commutation rules (4.9) for all α coefficients. Then the
commutation rules (4.26) would have to hold for all Lµ

m , and this would lead to contra-
dictions unless the c-number term somehow cancels out. It is here that we have to enter
the ghost contribution to the energy-momentum tensors Tµν .

8.1. The energy-momentum tensor for the ghost fields.

We shall now go through the calculation of the ghost energy-momentum tensor T gh
αβ a bit

more carefully than in Green-Schwarz-Witten, page 127. Rewrite the ghost part of the
Lagrangian (8.14) as

Sgh
?
= − T

2

∫
d2σ

√
hhαβ(∇αcγ)bβγ , (8.16)

where, by partial integration, we brought Eq. (3.1.31) of Green-Schwarz-Witten in a
slightly more convenient form. However, we must impose as a further constraint the fact
that bαβ is traceless. For what comes next, it is imperative that this condition is also

3Since the determinant of a matrix is equal to that of its mirror, and since raising and lowering indices
does not affect the action of the covariant derivative ∇ , these changes are basically just notational, and
they will not affect the final results. One reason for replacing the indices this way is that now the ghosts
transform in a more convenient way under a Weyl rescaling.
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expressed in Lagrange form. The best way to do this is by adding an extra Lagrange
multiplier field c :

Sgh = −T

2

∫
d2σ

√
h

(
hαβ(∇αcγ)bβγ + hαβ c bαβ

)
. (8.17)

This way, we can accept all variations of bαβ that leave it symmetric (bαβ = bβα ). Inte-
gration over c will guarantee that bαβ will eventually be traceless.

After this reparation, we can compute T gh
αβ . The energy-momentum tensor is normally

defined by performing infinitesimal variations of hαβ :

hαβ → hαβ + δhαβ ; S → S +
T

2

∫
d2σ

√
h Tαβδhαβ . (8.18)

Since we vary hαβ but not bαβ , this may only be done in the complete ghost Lagrangian
(8.17). Using the following rules for the variations:

δ(hαβ) = −δhαβ ; δ
√

h = 1
2

√
h δhα

α ;

δΓγ
αβ = 1

2
(∇αδhγ

β +∇βδhγ
α −∇γδhαβ) , (8.19)

so that

δ(∇αcγ) = (δΓγ
ακ)c

κ , (8.20)

one finds:

δS =
−T

2

∫
d2σ

√
h

(
δhκλ

{
1
2
hκλ

(
(∇αcγ) bα

γ + c bα
α

)
− (∇κcγ)bλ

γ − c bκλ
}

+1
2
(∇λδhγα)cλ bαγ

)
, (8.21)

where indices were raised and lowered in order to compactify the expression. For the last
term, we use partial integration, writing it as −1

2
δhγα∇λ(c

λ bαγ), to obtain4

T gh
αβ = 1

2
cγ∇γbαβ + 1

2
(∇αcγ)bβγ + 1

2
(∇βcγ)bαγ − 1

2
hαβ(∇κc

γ)bκ
γ . (8.22)

Here, to simplify the expression, we made use of the equations of motion for the ghosts:

bα
α = 0 , ∇αbαβ = 0 ,

∇αcβ +∇βcα + 2c hαβ = 0 , c = −1
2
∇λc

λ . (8.23)

Then last term in Eq. (8.22) is just what is needed to make T gh
αβ traceless. The fact that

it turns out to be traceless only after inserting the equations of motion (8.23) has to do
with the fact that conformal invariance of the ghost Lagrangian is a rather subtle feature
that does not follow directly from its Lagrangian (8.17).

4Note that the covariant derivative ∇ has the convenient property that
∫

d2σ
√

h∇αFα(σ)= bound-
ary terms, if Fα transforms as a contra-vector, as it normally does.
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Since, according to its equation of motion, ∇−b++ = 0 and b+− = 0, we read off:

T++ = 1
2
c+∇+b++ + (∇+c+)b++ , (8.24)

and similarly for T−− , while T+− = 0.

The Fourier coefficients for the energy momentum tensor ghost contribution, Lghost
m ,

can now be considered. In the quantum theory, one then has to promote the ghost fields
into operators obeying the anti-commutation rules of fermionic operator fields. When
these are inserted into the expression for Lghost

m , they must be put in the correct order,
that is, creation operator at the left, annihilation operator at the right. Only this way,
one can assure that, when acting on the lost energy states, these operators are finite.

Subsequently, the commutation rules are then derived. They are found to be

[Lghost
m , Lghost

n ] = (m− n)Lghost
m+n +

(
− 26

12
m3 +

2

12
m

)
δm+n . (8.25)

The Lµ
m associated to Xµ all obey the commutation rules (4.26). The total constraint

operator associated with energy-momentum is generated by three contributions:

Ltot
m =

D∑

µ=1

Lµ
m + Lghost

m − aδm0 , (8.26)

and since for different µ these Lµ
m obviously commute, we find the algebra

[Ltot
m , Ltot

n ] = (m− n)Ltot
m+n +

(D − 26

12
m3 − D − 2− 24a

12
m

)
δm+n , (8.27)

so that the constraint

Ltot
m |ψ〉 = 0 (8.28)

can be obeyed by a set of “physical states” only if D = 26 and a = 1. The ground state
|0〉 has Ltot

0 |0〉 = 0 = Lghost
0 |0〉 , so, for instance in the open string,

−1
8
M2 = 1

8
p2

µ =
D∑

µ=1

Lµ
0 = a = 1 , (8.29)

which leads to the same result as in light-cone quantization: the ground state is a tachyon
since a = 1, and the number of dimensions D must be 26.

9. T-Duality.

(this chapter was copied from Amsterdam lecture notes on string theory)
Duality is an invertible map between two theories sending states into states, while pre-
serving the interactions, amplitudes and symmetries. Two theories that are dual to one
and another can in some sense be viewed as being physically identical. In some special
cases a theory can be dual to itself. An important kind of duality is called T -duality,
where ‘T’ stands for ‘Target space’, the D -dimensional space-time. We can map one
target space into a different target space.
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9.1. Compactifying closed string theory on a circle.

To rid ourselves of the 22 surplus dimensions, we imagine that these extra dimensions are
‘compactified’: they form a compact space, typically a torus, but other possibilities are
often also considered. To study what happens in string theory, we now compactify one
dimension, say the last spacelike dimension, X25 . Let it form a circle with circumference
2πR . This means that a displacement of all coordinates X25 into

X25′ → X25 + 2πR , (9.1)

sends all states into the same states. R is a free parameter here. Since the quantum wave
function has to return to itself, the displacement operator U = exp(ip 252πR) must have
the value 1 on these states. Therefore,

p 25 = n/R , (9.2)

where n is any integer. For a closed string, αµ
0 + α̃µ

0 is usually identified with pµ (when
` is normalized to one), therefore, we have in Eq. (3.22),

p 25 = α25
0 + α̃25

0 = n/R . (9.3)

This would have been the end of the story if we had been dealing with particle physics:
p 25 is quantized. But, in string theory, we now have other modes besides these. Let us
limit ourselves first to closed strings. A closed string can now also wind around the
periodic dimension. If the function X25 is assumed to be a continuous function of the
string coordinate σ , then we may have

X25(σ + π, τ) = X25(σ, τ) + 2πmR , (9.4)

where m is any integer. Therefore, the general closed string solution, Eq. (3.22) must be
replaced by

X25 = x25 + p 25τ + 2mR σ + oscillators . (9.5)

Since we had split the solution in right- and left movers, Xµ = Xµ
L(τ + σ) + Xµ

R(τ − σ),
and

∂Xµ
R(τ)

∂τ
=

∑
n

αµ
n e−2inτ ,

∂Xµ
L(τ)

∂τ
=

∑
n

α̃µ
n e−2inτ , (9.6)

we find that

α25
0 = 1

2
p 25 −mR =

n

2R
−mR ,

ã25
0 = 1

2
p 25 + mR =

n

2R
+ mR , (9.7)
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where both m and n are integers.

The constraint equations, Eqs. (4.30) for the closed string for n = 0 now read

1
2
p− =

1

p+

(
1
4
(ptr)2 + (α25

0 )2 + 2
∑

i, k>0

αi †
k αi

k − 2a
)

=
1

p+

(
1
4
(ptr)2 + (α̃25

0 )2 + 2
∑

i, k>0

α̃i †
k α̃i

k − 2a
)

. (9.8)

If we define M to be the mass in the non-compact dimensions, then

M2 = −
24∑

n=0

pµpµ =
n2

R2
+ 4 m2R2 − 4nm + 8

∑
αi †

k αi
k − 8a

=
n2

R2
+ 4 m2R2 + 4nm + 8

∑
α̃i †

k α̃i
k − 8a . (9.9)

Note that the occupation numbers of the left-oscillators will differ from those of the right-
oscillators by an amount nm , fortunately an integer.

If we wish, we can now repeat the procedure for any other number of dimensions, to
achieve a compactification over multi-dimensional tori.

9.2. T -duality of closed strings.

Eq. (9.7) exhibits a peculiar feature. If we make the following replacements:

R ↔ 1/2R ; n ↔ m ;

α25
0 ↔ −α25

0 ; α̃25
0 ↔ α̃25

0 , (9.10)

the equations continue to hold. The factor 2 is an artifact due to the somewhat awkward
convention in Green, Schwarz & Witten to take π instead of 2π as the period of the σ
coordinate. This is ‘T -duality’. The theories dual to one another are:

• Bosonic string theory, compactified on a circle of radius R , describing a string of
momentum quantum number n and winding number m , and

• Bosonic string theory, compactified on a circle of radius 1/2R , describing a string
of momentum quantum number m and winding number n .

The precise prescription for the map is deduced from the relations (9.10): it requires the
‘one-sided parity transformation’

X25
R ↔ −X25

R ; X25
L ↔ X25

L . (9.11)

Not only do the theory and its dual have exactly the same mass spectrum, as can be
deduced from Eq. (9.9), but all other conceivable properties match.

It is generally argued, that, because of this duality, theories with compactification
radius R < 1/

√
2 make no sense physically; they are identical to theories with R greater

than that. Thus, there is a minimal value for the compactification radius.
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9.3. T -duality for open strings.

Consider now a theory with open strings. Although higher order interactions were not
yet discussed in these lectures, we can see how they may give rise to the emergence of
closed strings in a theory of open strings. If strings can join their end points, they can
also join both ends to form a closed loop. This is indeed what the intermediate states
look like when higher order effects are calculated. The closed string sector now allows
for the application of T -duality there. So the question can be asked: can we identify a
duality transformation for open strings? At first sight, the answer seems to be no. But
we can ask what kind of ‘theory’ we do get when applying a T -duality transformation on
an open string.

The open string also contains left- and right going modes, but they are described by
one and the same function, Xµ

L(τ) = Xµ
R(τ), see Eq. (3.9) Let us now write instead:

X25
L (τ) = 1

2
(x25 + c) + 1

2
p 25τ + 1

2
i

∑

n 6=0

1

n
α25

n e−inτ ;

X25
R (τ) = 1

2
(x25 − c) + 1

2
p 25τ + 1

2
i

∑

n 6=0

1

n
α25

n e−inτ , (9.12)

where the number c appears to be immaterial, as it drops out of the sum

X25(σ, τ) = X25
L (τ + σ) + X25

R (τ − σ) , (9.13)

and x25 is still the center of mass in the 25-direction.

Let us assume X25 to be periodic with period 2πR . Thus, p25 is quantized:

p25 = n/R , (9.14)

Let us again perform the transformation that appears to be necessary to get the ‘dual
theory’: X25

R ↔ −X25
R . The resulting field X25 is

X̃25(σ, τ) = X25
L (τ + σ)−X25

R (τ − σ) = c + p 25σ +
∑

n 6=0

1

n
α25

n e−inτ sin nσ . (9.15)

of course all other coordinates remain the same as before. We see two things:

i There is no momentum. One of the end points stays fixed at position c . Further-
more,

ii The oscillating part has sines where we previously had cosines. This means that the
boundary conditions have changed.

What were Neumann boundary conditions before, now turned into Dirichlet boundary
conditions: one end point stays fixed at X25 = c , the other at X25 = c + πn/R . This, we
interpret as a string that is connected to a fixed plane X25 = c , while wrapping n times
around a circle with radius 1

2R
.
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Thus, we encountered a new kind of object: Dirichlet branes, or D-branes for short.
They will play an important role. We found a sheet with D − 2 = 24 internal space
dimensions and one time dimension. We call this a D24-brane. The duality transformation
can be carried out in other directions as well, so quite generally, we get Dp-branes, where
0 ≤ p ≤ 25 is the number of internal dimensions for which there is a Neumann boundary
condition (meaning that, in those directions, the end points move freely. In the other,
D−p−1 directions, there is a Dirichlet boundary condition: those end point coordinates
are fixed. T -duality interchanges Neumann and Dirichlet boundary conditions, hence,
T -duality in one dimension replaces a Dp-brane into a D p ± 1 brane. These D-branes
at first sight may appear to be rather artificial objects, but when it is realized that one
of the closed string solutions acts as a graviton, so that it causes curvature of space and
time, allowing also for any kind of target space coordinate transformation, we may suspect
that D-branes may also obtain curvature, and with that, thay might become interesting,
dynamical objects, worth studying.

9.4. Multiple branes.

The two end points of an open string may be regarded as living in a D25-brane. We now
consider a generalization of string theory that we could have started off from right at the
beginning: consider a set of N D25-branes. The end points of a string can sit in any one
of them. Thus, we get an extra quantum number i = 1, · · · , N , associated to each end
point of a string. In QCD, this was done right from the beginning, in order to identify the
quantum numbers of the quarks at the end points. The quantum numbers i were called
Chan-Paton factors. All open strings are now regarded as N ×N matrices, transforming
as the N2 dimensional adjoint representation of U(N). We write these states as |ψ〉⊗λij .

A three point scattering amplitude, with λa
ij , a = 1, 2, 3 describing the asymptotic

states, obtains a factor that indicates the fact that the end points each remain in their
own D-brane:

δi i′δ
j j′δkk′ λ1

ijλ
2
j′kλ

3
k′i′ = Tr λ1λ2λ3 . (9.16)

in the target space theory, the U(N) has the interpretation of a gauge symmetry; the
massless vectors in the string spectrum will be interpreted as gauge bosons for the non-
Abelian gauge symmetry U(N).

9.5. Phase factors and non-coinciding D-branes.

The previous subsection described ‘stacks’ of D-branes. However, we might wish to de-
scribe D-branes that do not coincide in target space. Take for instance several D24 branes
that are separated in the X25 direction. Let the D-brane with index i sit at the spot
X25 = R̃θi . An open string with labels i at its end points must have these end points
fixed at these locations with a Dirichlet boundary condition. Let us now ‘T-dualize’ back.
In Eq. (9.15), we now have to substitute

c = R̃ θi ; p25 =
R̃

π
(θj − θi + 2πn) , (9.17)
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where n counts the number of integral windings. The T-dual of this is Eq. (9.13), where
x25 is arbitrary and

p25 = (θj − θi + 2πn)/(2πR) , (9.18)

where R = 1/2R̃ . here, we see that we do not have the usual periodicity boundary
condition as X25 → X25+2πR , but instead, what is called a ‘twisted boundary condition’:

ψ(X25 + 2πR) = e ip25(2πR) ψ(X25) = ei(θj−θi)ψ(X25) . (9.19)

This boundary condition may arise in the presence of a gauge vector potential A i
25, j .

A twisted boundary condition (9.19) could also occur for a single open string. In that
case, the dual string will be an oriented string, whose two end points sit on different
D-branes, a distance θR̃ apart.

10. Complex coordinates.

In modern field theory, we often perform the Wick rotation: write time t (= x0) as
t = ix4 , and choose x4 to be real instead of imaginary. This turns the Lorentz group
SO(D− 1, 1) into a more convenient SO(D). We do the same thing for the τ coordinate
of the string world sheet: σ = σ1, τ = iσ2 . The coordinates σ± then become complex.
Define

ω = σ+ = σ1 + iσ2 ; ω̄ = −σ− = σ1 − iσ2 . (10.1)

The reasons for the sign choices will become clear in a moment (Eqs. (10.4) and (10.6))
— but in the literature, one will discover that authors are sloppy and frequently switch
their notation; there is no consensus. Since −eφdσ+dσ− = eφdωdω̄ , the conformal gauge,

hαβ = −1
2
eφ

(
0 1
1 0

)
, now reads

ds2 = eφ dω dω̄ . (10.2)

Instead of the light-cone gauge in Minkowski space, we can now map the string world
sheet onto a circle in Euclidean space. This can still be done if we consider the complete
world sheet of strings joining and splitting at their end point (as long as the resulting
diagram remains simply connected; loop diagrams will require further refinements that
we have not yet discussed).

In the case of the open string, we make the transition to the variables

z = eiω , z̄ = e−iω̄ , (10.3)

so that the solution (3.15) reads

dXL

dτ
= 1

2

∑
n

αµ
n

(
1

z

)n

,
dXR

dτ
= 1

2

∑
n

αµ
n

(
1

z̄

)n

. (10.4)
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Eq. (10.3) is a conformal transformation (see below).

In the case of the closed string, we have periodicity with period π in σ± . Therefore,
it is advised to make the transition to the variables

z = e2iω , z̄ = e−2iω̄ . (10.5)

The closed solution, Eq. (3.22), then looks like

dXµ

dτ
=

∑
n

α̃µ
n

(
1

z

)n

+
∑
n

αµ
n

(
1

z̄

)n

(10.6)

(usually, αµ
n and α̃µ

n are switched here).

Indices are raised and lowered as in General Relativity: Aµ = gµνA
ν . Here, the metric

is hαβ , and we keep the notation ± for the indices, which now refer to z and z̄ . To stay
as close as possible to the (somewhat erratic) notation of Green, Schwarz and Witten, we
make the sign switch of Eq. (10.1) so,

t+ = 1
2
eφt− ; t− = 1

2
eφt+ . (10.7)

A conformal transformation is one that keeps the form of the metric, Eq. (10.2). The
most general5 conformal transformation is

z → z′ = f(z) , z̄ → z̄′ = f̄(z̄) , (10.8)

or: ∂z′/∂z̄ = 0 and ∂z̄′/∂z = 0. The transformation (10.5) is an example. The relation
z̄ = z∗ relates the transformation of z to that of z̄ . From (10.2) we read off that the
conformal factor % = eφ transforms as

% → %′ =

∣∣∣∣∣
dz′

dz

∣∣∣∣∣
−2

% . (10.9)

As we defined the transformation rules (8.6) for vectors and (8.7) for tensors, to be just
like those for gradients, we find that an object with nu upper and n` lower holomorphic
indices (+), and n̄u upper and n̄` lower anti-holomorphic (−) indices, transforms as

t → t′ =
(dz′

dz

)nu−n`
(dz̄′

dz̄

)n̄u−n̄`
t . (10.10)

The number n = n` − nu (n̄ = n̄` − n̄u ) is called the holomorphic (antiholomorphic)
dimension of a tensor t .

Now let us consider the covariant derivative ∇ . The Christoffel symbol Γ, Eq. (8.8),
in the conformal gauge (10.2) is easily seen to have only two non vanishing components:

Γ+
++ = ∂+φ , Γ−−− = ∂−φ . (10.11)

5This is not quite true; we could interchange the role of z and z̄ . Such ‘antiholomorphic’ transforma-
tions are rarely used.
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Consequently, the covariant derivatives of a holomorphic tensor with only + indices are

∇+ t···++··· = (∂+ − n ∂+φ) t···++···
∇− t···++··· = ∂− t···++··· , (10.12)

and similarly for an antiholomorphic tensor.

We define the quantities h = nu − n` and h̄ = n̄u − n̄` as the weights of a tensor field
t(z, z̄). Consider an infinitesimal conformal transformation:

(z′, z̄′) = (z, z̄) + (ξ(z), ξ̄(z̄)) ,
∂ξ

∂z̄
= 0 =

∂ξ̄

∂z
. (10.13)

Then a field t transforms as

t → t′ = t + δξt + δξ̄t ; δξt =
(
ξ(z)

∂

∂z
+ h

(∂ξ(z)

∂z

))
t(z, z̄) . (10.14)

Since not all fields transform in this elementary way, we call such a field a primary field.
The quantity ∆ = h + h̄ is called the (holomorphic) scaling dimension of a field, since
under a scaling transformation z → eλ ·z , a field t transforms as t → eλ∆t . The quantity
s = h− h̄ is called spin.

The stress tensor Tαβ is traceless: T+− = 0 , and it obeys ∂αTαβ = 0 , or more
precisely:

ηαγ∂αTγβ = 0 → ∂−T++ = 0 = ∂+T−− . (10.15)

Therefore, T++ is holomorphic. We write its Laurent expansion as a function of z :

T++ = T (z) =
∑

n∈Z
Ln z−n−2 , L†n = L−n . (10.16)

Conversely, using Cauchy’s formula, we can find the coefficients Ln out of T (z):

Ln =
∮ dz

2πi
zn+1T (z) . (10.17)

The T field will turn out not to transform as a primary field.

11. Fermions in strings.

11.1. Spinning point particles.

For a better understanding of strings it is useful to handle conventional particle theories
in a similar manner. So let us concentrate on a point particle on its ‘world line”, the
geodesic. The analogue of the Nambu-Goto action (2.9) is the geodesic action (2.6), or

S = −
∫

dτ m
√
−(∂τxµ)2 (11.1)
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(Note that (∂τx
µ)2 = −∂τx

02
+ ∂τx

i2 < 0). The equivalent of the Polyakov action (2.18):

S =
∫

dτ 1
2

((∂τx
µ)2

e
− em2

)
. (11.2)

In this action, e(τ) is a degree of freedom equivalent to
√

h or −h00/
√

h . Its equation of
motion is

e =
1

m

√
−(∂τxµ)2 , (11.3)

where the sign was chosen such that it matches (2.6) and (11.1)

When there are several kinds of particles in different quantum states, we simply replace
m2 in (11.2) by an operator-valued quantity M2 . Its eigenvalues are then the mass-
squared of the various kinds of particles.

If these particle have spin, it just means that M2 is built out of operators that trans-
form non-trivially under the rotation group. However, if we want our theory to be Lorentz
invariant, these operators should be built from Lorentz vectors and tensors. They will con-
tain Lorentz indices µ that range from 1 to 4. Now, the Lorentz group is non-compact,
and its complete representations are therefore infinite-dimensional. Our particle states
should only be finite representations of the little group, which is the subset of Lorentz
transformations that leave ∂τx

µ unchanged. So, if we have operators Aµ , then in order
to restrict ourselves to the physically acceptable states, we must impose constraints on
the values of (∂τx

µ)Aµ .

In the case of spin 1
2
, the vector operators one wants to use are the γµ , and, since

pµ = (m/e) ∂τx
µ , the constraint equation for the states |ψ〉 is

(i ∂τx
µ γµ + me)|ψ〉 = 0 . (11.4)

We make contact to string theory if, here, m e is replaced by operators that also obey (anti-
)commutation rules with the gamma’s. We’ll see how this happens; there will be more than
one set of gamma’s. The conclusion from this subsection is that modes with spin, either
integer or half-odd integer, can be introduced in string theory if we add anticommuting
variables γµ to the system, which then will have to be subject to constraints.

11.2. The fermionic Lagrangian.

This part of the lecture notes is far from complete. The student is advised to read the
different views displayed in the literature.

In principle, there could be various ways in which we can add fermions to string theory.
A natural attempt would be to put them at the end points of a string, just the way strings
are expected to emerge in QCD: strings with quarks and antiquarks at their end points.
Apart from anomalies that are then encountered in higher order loop corrections (not yet
discussed here), one problem is quite clear from what we have seen already: the tachyonic
mode. There is an ingenious way to get rid of this tachyon by using ‘world sheet fermions’
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that exist also in the bulk of the string world sheet. As we shall see, it is super symmetry
on the world sheet that will then save the day. The resulting space-time picture will also
exhibit supersymmetry, so, if it is QCD that one might try to reproduce, it will be QCD
with gaugino’s present: fermions in the adjoint representation. In QCD, such fermions
are attached to two string end points, so, these fermions will indeed reside between the
boundaries, not at the boundaries, of the string world sheet.

We shall introduce them in a very pedestrian way. The gamma matrices mentioned
above will be treated as operators, and they will act just as fermionic fields in four
dimensional space time, accept that they carry a Lorentz index: ψµ(τ, σ).

Apart from that, the world sheet fermion thinks it lives only in one space-, one time
dimension. Its description differs a bit from the usual four dimensional case. Our fermion
fields ψµ(τ, σ) are two-dimensional Majorana spinors, that is, real, two component spinors,(

ψµ
1

ψµ
2

)
. In the usual path-integral picture, these two components are anticommuting num-

bers: {ψµ
i , ψν

j } = 0. In two dimensions, we use just two gamma matrices instead of
four. Since they differ from the usual four-dimensional ones, we call them %α, α = 1, 2.
Sticking to the Green-Schwarz-Witten notation, we choose

%1 =
(

0 i
i 0

)
, %2 =

(
0 −1
1 0

)
, %0 = i%2 , (11.5)

obeying

{%α, %β} = −2η αβ . (11.6)

Note that summation convention in Minkowski space means

ψ
µ
χµ =

D−1∑

i=1

ψ
i
χi − ψ

0
χ0 . (11.7)

Usually, one defines ψ
µ

= ψµ†γ0 . Now, we leave out the † , since ψ is real6 (provided, of
course, that the Minkowski time component is taken to be ψ0 , not ψ4 ). So, we take

ψ
µ

= ψµT%0 , (11.8)

where ψµT stands for (ψµ
1 , ψµ

2 ) instead of
(

ψµ
1

ψµ
2

)
. The Dirac Lagrangian for massless,

two-dimensional Majorana fermions is then

L =
i

2π
ψ

µ
%α∂αψµ . (11.9)

The factor 1/2π is only added here for later convenience; we do not have that in con-
ventional field theory. Since %0 is antisymmetric, two different spinors ψ and χ , obey
χψ = −ψT(χT), and since fermion fields anticommute,

χψ = ψχ . (11.10)

6The notation differs from other conventions. For instance, in my own field theory courses, I define
the γµ, µ = 1, · · · , 4 to be hermitean, not antihermitean like here. But then we also take ψ = ψ†γ4 ,
instead of (11.8), so that, in Eq. (11.9), factors i will cancel.
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Also, we have

χ%µψ = −ψ%µχ . (11.11)

Eq. (11.9) actually already assumes that we are in the conformal gauge. We can avoid
that by writing the Lagrangian in a reparametrization-invariant way. To do this, we need
the square root of the metric hαβ of the Polyakov action (2.18). This is the so-called
‘Vierbein field’ eA

α (here, ‘Zweibein’ would be more appropriate):

hαβ = ηAB eA
α eB

β ; hαβ = ηAB eAαeBβ . (11.12)

As we have with the metric tensor hαβ , we define eAα to be the inverse of eA
α , and we

can use this matrix to turn the ‘internal Lorentz indices’ A, B into lower or upper external
indices α, β (the internal indices are not raised or lowered, as they are always contracted
with ηAB ). We then define %A, A = 1, 2, or A = 0, 1, as in (11.5),

%µ = eAµ%A . (11.13)

The index 0 in %0 in Eq. (11.8) is an internal one, and we must write (11.9) as

L =
i

2π

√
h ψ

µ
eAα%A∂αψµ. (11.14)

At first sight, this seems not to be conformally invariant, but we can require ψ to transform
in a special way under conformal transformations, such that Eq. (11.9) re-emerges if we
return to the conformal gauge condition 7.

There are considerable simplifications due to the fact that these ‘fermions’ only live
in one space dimension. The Dirac equation %α∂αψ = 0 can be rewritten as

(%+∂− + %−∂+)ψ = 0 , (11.15)

where, in the basis of (11.5),

%+ = %0 + %1 , %− = %0 − %1 ;

%+ = −1
2
%− =

(
0 i
0 0

)
, %− = −1

2
%+ =

(
0 0
−i 0

)
. (11.16)

Because of these expressions, ψµ
1 and ψµ

2 are renamed as ψµ
− and ψµ

+ , and (11.15) turns
into

∂−ψµ
+ = 0 , ∂+ψµ

− = 0 , (11.17)

or, ψ+ is holomorphic and ψ− anti-holomorphic.

The energy-momentum tensor is obtained by considering a variation of hαβ and the
associated ‘Zweibein’ eA

α in the action

S = − 1

2π

∫
d2σ

(
∂αXµ∂αXµ − iψ

µ
%α∂αψµ

)
, (11.18)

7The effect of this is that, in Eq. (11.14), we must replace
√

h by 4
√

h .
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after inserting the metric tensor and the zweibein as in Eqs. (2.18) and (11.14):

eA
α → eA

α + δeA
α ; (11.19)

eAα eA
β = δα

β , so, eAα → eAα + δ(eAα) ; δ(eAα) = −eBαδeB
βeAβ . (11.20)

This first leads to

δS =
1

π

∫
d2σ

√
h TAαδeA

α , TAγ = eAβhγαTαβ

Tαβ = ∂αXµ∂βXµ − 1
2
iψ

µ
%β∂αψµ − 1

2
ηαβ(Trace) (11.21)

This is not yet the symmetric Tαβ of Eq. (4.1.14) in Green, Schwarz and Witten8 The
antisymmetric part of Tαβ , however, is the generator of internal lorentz transformations,
and since the theory is invariant under those, it should vanish after inserting the equations
of motion. Indeed, from Eqs. (11.17) and (11.16) we see that %+∂−ψµ = 0 and %−∂+ψµ =
0, separately. So, Eq. (11.21) can be rewritten as9

Tαβ = ∂αXµ∂βXµ − 1
4
iψ

µ
%α∂βψµ − 1

4
iψ

µ
%β∂αψµ − 1

2
ηαβ(Trace) (11.22)

Plugging in the expressions (11.5) and (11.16) for the %-matrices, we get10

T++ = ∂+Xµ∂+Xµ + 1
2
i ψµ

+∂+ψµ
+ ;

T−− = ∂−Xµ∂−Xµ + 1
2
i ψµ

−∂−ψµ
− . (11.23)

These are exactly the energy and momentum as one expects for a fermionic field, analogous
to the 3+1 dimensional case.

11.3. Boundary conditions.

According to the variation principle, the total action should be stationary under infinites-
imal variations δψµ

± of ψµ
± . The fermionic action (11.14) varies according to

δS =
i

2π

∫
d2σ

(
δψ

µ
(%∂)ψµ + ψ

µ
(%∂)δψµ

)

=
i

2π

∫
d2σ

(
δψ

µ
(%∂)ψµ + ∂α(ψ

µ
%αδψµ)− ∂αψ

µ
%αδψµ

)

=
i

2π

∫
d2σ

(
2δψ

µ
(%∂)ψµ + ∂α(ψ

µ
%αδψµ)

)
, (11.24)

where (11.11) was used. The equation of motion, %∂ψµ = 0, follows, as expected. But,
in the case of an open string, the total integral gives a boundary contribution at the
end points of the integration over the σ coordinate (the τ integration gives no boundary
effects, as the variations vanish at τ → ±∞). Therefore, we must require

ψ
µ
%1δψµ

∣∣∣
σ=π

σ=o
= (ψµ

−δψµ
− − ψµ

+δψµ
+)

∣∣∣
σ=π

σ=0
= 0 . (11.25)

We have the following possibilities:

8Which also appears to contain a sign error.
9To see that the trace of the fermionic Tαβ vanishes, the remark in the footnote under Eq1. (11.14)

must be observed.
10The sign error mentioned in an earlier footnote disappears here.
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• ψµ
+ = ±ψµ

− and δψµ
+ = ±δψµ

− at σ = 0, π .

• δψµ
±(τ, σ = 0, π) = 0.

In the last case, the end points are fixed. This is the analogue of the bosonic Dirichlet
condition. It would however be too restrictive in combination with the equations (11.17).

In the first case, with which we proceed, we decide to choose ψµ
+(τ, 0) = ψµ

−(τ, 0),
which, due to some freedom of defining the sign of the wave functions, is no loss of
generality. But then, at the point σ = π , there are two possibilities:

• ψµ
+(τ, π) = ψµ

−(τ, π) (Ramond)

• ψµ
+(τ, π) = −ψµ

−(τ, π) (Neveu-Schwarz)

The equations (11.17) are now solved using exactly the same techniques as in section
3.3.1. In the Ramond case, we find periodicity in the coordinates σ± = τ ± σ , but in the
Neveu-Schwarz case, there is ‘anti-periodicity’, which is easy to accommodate:

Ramond:

ψµ
− = 1√

2

∑
n

dµ
n e−in(τ−σ) ,

ψµ
+ = 1√

2

∑
n

dµ
n e−in(τ+σ) , with n integer, and dµ†

n = dµ
−n , (11.26)

Neveu-Schwarz:

ψµ
− = 1√

2

∑
r

bµ
r e−ir(τ−σ) ,

ψµ
+ = 1√

2

∑
r

bµ
r e−ir(τ+σ) , with r + 1

2
integer, and bµ†

r = bµ
−r . (11.27)

The factors 1/
√

2 are for later convenience.

We can invert these equations:

dµ
n =

1

π
√

2

∫ π

0
dσ

(
ψ+(τ, σ) ein(τ+σ) + ψ−(τ, σ) ein(τ−σ)

)
(Ramond) ; (11.28)

bµ
r =

1

π
√

2

∫ π

0
dσ

(
ψ+(τ, σ) eir(τ+σ) + ψ−(τ, σ) eir(τ−σ)

)
(Neveu-Schwarz) . (11.29)

For closed strings, we have no end points but only periodicity conditions. Since the
left moving modes are here independent of the right moving modes. Using the letter n
for integers and r for integers plus 1

2
, we have for the right movers:

ψµ
−(τ, σ) = ψµ

−(τ, σ + π) → ψµ
− = 1√

2

∑
n

dµ
n e−2in(τ−σ) ,

or ψµ
−(τ, σ) = −ψµ

−(τ, σ + π) → ψµ
− = 1√

2

∑
r

bµ
r e−2ir(τ−σ) . (11.30)
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Again, choosing the sign is the only freedom we have, since ψµ is real. Similarly for the
left movers:

ψµ
+(τ, σ) = ψµ

+(τ, σ + π) → ψµ
+ = 1√

2

∑
n

d̃µ
n e−2in(τ+σ) ,

or ψµ
+(τ, σ) = −ψµ

+(τ, σ + π) → ψµ
+ = 1√

2

∑
r

b̃µ
r e−2ir(τ+σ) . (11.31)

We refer to these four cases as: R-R, R-NS, NS-R and NS-NS.

11.4. Anticommutation rules

We choose a prefactor in the fermionic action:

L =
1

2π
iψ

µ
%∂ ψµ . (11.32)

If we quantize such a theory, the anticommutation rules will be:

{ψµ
A(τ, σ), ψν

B(τ, σ′)} = πδ(σ − σ′)δABδµν , (11.33)

where A and B are the spin indices, ± . To see that these are the correct quantization
conditions for Majorana fields, let us split up a conventional Dirac field into two Majorana
fields:

ψDirac = 1√
2
(ψ1 + iψ2) ,

ψDirac = 1√
2
(ψ1 − iψ2) . (11.34)

We then usually have

LDirac = iψ %∂ ψ , (11.35)

and the usual canonical arguments lead to the anticommutation rules

{ψA(x, t), ψB(y, t)} = 0 ,

{ψ†A(x, t), ψ†B(y, t)} = 0 ;

{ψA(x, t), ψ†B(y, t)} = δ(x− y)δAB . (11.36)

Now substituting (11.34), we find

LMajorana = 1
2
i(ψ1 %∂ ψ1 + ψ2 %∂ ψ2) , (11.37)

whereas, from (11.36),

{ψ1A(x, t), ψ1B(y, t)} = {ψ2A(x, t), ψ2B(y, t)} = δ(x− y)δAB ;

{ψ1A(x, t), ψ2B(y, t)} = 0 . (11.38)

If ψ is multiplied with a constant, then we must use the same constant in Eqs. (11.38) as
in (11.37). This explains how the canonical formalism leads to Eq. (11.33) from (11.32).
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We can now use Eq. (11.33) to derive the commutation rules for the coefficients dµ
n and

bµ
r from Eqs. (11.28) and (11.29):

{dµ
m, d ν

n} =
δµν

2π2

∫ π

0
dσ

(
π ei(τ+σ)(m+n) + π ei(τ−σ)(m+n)

)

= δµνδm+n ; (11.39)

{bµ
r , b ν

s } = δµνδr+s . (11.40)

Just like the coefficients of the bosonic oscillators, the dµ
n with positive n lower the world

sheet energy by an amount n , and the bµ
r by an amount r , so if n and r are positive,

they are annihilation operators. If n and r are negative, they raise the energy, so they
are creation operators.

Note that the anti-commutation rules given here are the ones prior to imposing local
gauge conditions, just like in the bosonic sector of the theory (see Section 11.8).

Note also, that the operators br in the Neveu-Schwarz case, raise and lower the energy
(read: the mass-squared of the string modes) by half -integer units. Thus, we get bosons
with half-integer spacings, while the fermions are all integer units apart. This strange
asymmetry between fermions and bosons will be removed in Chapter 12.

11.5. Spin.

Like always with fermions, the occupation numbers can only be 0 or 1. The zero modes,
dµ

0 , give rise to a degeneracy in the spectrum: spin. In the case of the half-integer modes,
the Neveu-Schwarz sector, these zero modes do not occur. The ground state is unique: a
particle with spin zero. All other modes are obtained by having operators αµ

n and/or bµ
r

act on them. Since these are vector operators, we only get integer spin states this way.
Therefore, the Neveu-Schwarz sector only describes bosonic, integer spin modes.

In the Ramond sector, however, the ground state is degenerate. There is a unique set
of operators dµ

0 , obeying

{dµ
0 , d ν

0 } = η µν . (11.41)

They do not raise or lower the energy, so they leave M2 invariant. They will be identified
with the Dirac matrices. If the Dirac matrices are chosen to obey the anticommutation
rule

{Γµ, Γν} = −2η µν , (11.42)

then we have

Γµ = i
√

2 dµ
0 . (11.43)

Thus, for the open string, it is the Ramond sector where the ground state is a fermion. All
excited states are then fermions also, because the mode operators αµ

n and dµ
n all transform

as vectors in Minkowski space.
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For the closed string, we must have an odd number of such zero modes, to see fermionic
states arise. Therefore, we expect the R-R and NS-NS sectors both to be bosonic, whereas
the R-NS and NS-R sectors are fermionic.

11.6. Supersymmetry.

To enable us to impose the constraints, we need world sheet supersymmetry. The super-
symmetry transformations are generated by a real anticommuting generator ε :

δXµ = ε̄ψµ = ψ
µ
ε ,

δψµ = −i(%∂)Xµε or equivalently, δψ
µ

= iε̄ (%∂)Xµ . (11.44)

One quickly verifies that the total action,

S = − 1

2π

∫
d2σ

(
∂αXµ∂αXµ − iψ

µ
%α∂αψµ

)
, (11.45)

is left invariant (use partial integration, and %α∂α %β∂β = −ηαβ∂α∂β , see Eq. (11.6)).

This supersymmetry is a global symmetry. If ε were τ, σ -dependent, we would have

δS =
−2

π

∫
d2σ(∂αε̄)Jα , (11.46)

with

Jα = −1
2
%β%αψµ∂βXµ (11.47)

(the factor −1
2

being chosen for future convenience). We have

∂αJα = 0 and %αJα = 0 . (11.48)

The first of these can easily be derived from the equations of motion, and the second
follows from

%α%β%α = 0 . (11.49)

Plugging in the expressions (11.5) and (11.16) for the %-matrices, we get

J+ = ψµ
+∂+Xµ ; J− = ψµ

−∂−Xµ . (11.50)

All other components vanish.

The supercurrent (11.47), (11.50) is closely related to the energy-momentum tensor
Tαβ . Later, we shall see that they actually are super partners. So, since we already have
the constraint Tαβ = 0, supersymmetry will require Jα = 0 as well. From the discussion
in subsection 11.1, we derive that this is exactly the kind of constraint needed to get
a finite fermionic mass spectrum. Such a constraint, however, can only be imposed if
we turn our supersymmetric theory into a locally supersymmetric theory. After all, the
constraint Tαβ = 0 came from invariance under local reparametrization invariance. A
detailed discussion of this can be found in Green-Schwarz-Witten, section 4.3.5.
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11.7. The super current.

As for the bosonic string, we can now summarize the constraints for a string with fermions:

Ln =
1

π

∫ π

0
dσ

(
einσT++ + e−inσT−−

)
,

Fn =

√
2

π

∫ π

0
dσ

(
einσJ+ + e−inσJ−

)
, (Ramond)

Gr =

√
2

π

∫ π

0
dσ

(
eirσJ+ + e−irσJ−

)
. (Neveu-Schwarz) (11.51)

Working out the form of Ln , we find that it now also contains contributions from the
fermions (by plugging the Fourier coefficients of Eqs. (11.26) and (11.27) in the fermionic
part of (11.23)):

Ln = L(α)
n + L(d)

n , (Ramond)

Ln = L(α)
n + L(b)

n , (Neveu-Schwarz) (11.52)

where

L(α)
n = 1

2

∑
m

: αµ
−mαµ

n+m : ,

L(d)
n = 1

2

∑
m

(m + n) : dµ
−mdµ

n+m : with m integer,

L(b)
n = 1

2

∑
r

(r + n) : bµ
−rb

µ
n+r : with r integer + 1

2
. (11.53)

Here, we again normal-ordered the expressions (that is, removed the vacuum contribu-
tions). In the last two expressions, the terms +n can be dropped, because the d ’s and
the b ’s anticommute. In Green-Schwarz-Witten, due to a more symmetric expression for
Tαβ , there still is the term +1

2
n .

Next, we get

Fn =
∑
m

αµ
−mdµ

n+m ;

Gr =
∑
m

αµ
−mbµ

r+m . (11.54)

Normal ordering was not necessary here.

Let us compute the commutators. The easiest is [Lm, Fn] . We see that

[L(α)
m , αν

k] = −k αν
k+m ,

[L(d)
m , dν

k] = −(1
2
m + k)dν

k+m . (11.55)

From this,

[Lm, Fn] = (1
2
m− n)Fm+n . (11.56)

54



Similarly,

[Lm, Gr] = (1
2
m− r)Gm+r . (11.57)

Next, we consider [Gr, Gs] . We take the case r ≥ 0. If A and B are bosonic operators,
and ψ and η fermionic, and if the bosonic operators commute with the fermionic ones,
one has

{Aψ, Bη} = [A, B] ψη + BA {ψ, η}
= −[A, B] ηψ + AB {η, ψ} , (11.58)

which one very easily verifies by writing the (anti-)commutators in full. Using Eq. (11.54)
for the Gr coefficients, we write

{Gr, Gs} =
∑

m,k

(
either [αµ

−m, αν
−k] b

µ
r+mb ν

s+k + αν
−kα

µ
−m {bµ

r+m, b ν
s+k}

or −[αµ
−m, αν

−k] b
ν
s+kb

µ
r+m + αµ

−mαν
−k {b ν

s+k, bµ
r+m}

)
. (11.59)

Substituting the values for the commutators, we find that the summation over k can be
written as

=
∑

k

(
either k bµ

r−kb
µ
s+k + αµ

−kα
µ
r+s+k

or −k bµ
s+kb

µ
r−k + αµ

r+s+kα
µ
−k

)
. (11.60)

If r + s 6= 0, this unambiguously leads to 2Lr+s . But, if r + s = 0, we have to look at
the ordering.

Take the case that r > 0, s < 0 (the other case goes just the same way). Notice
that, for k > r , the top line has vanishing expectation value, so it leads directly to the
corresponding contributions in 2Lr+s . The same is true for the bottom line, if k ≤ 0. Only
for the values of k between 0 and r , both of these lines give the same extra contributions:
k δµµ = k D , if D is the number of dimensions included in the sum. We have to add these
contributions for 0 ≤ k ≤ r − 1

2
. This gives (note that k is an integer):

r−1
2∑

k=0

k δr+s D = 1
2
(r − 1

2
)(r + 1

2
)δr+s D . (11.61)

Thus we find

{Gr, Gs} = 2Lr+s + B(r)δr+s , B(r) = 1
2
D(r2 − 1

4
) . (11.62)

The calculation of [Fm, Fn] goes exactly the same way, except for one complication: we
get a contribution from ±m dµ

0 dµ
0 . Here, we have to realize that (dµ

0 )2 = 1
2
{dµ

0 , dµ
0 } = 1

2
.

Thus, Eq. (11.61) is then replaced by

(1
2
m +

m−1∑

k=0

k) δm+n D = 1
2
m2δm+n D , (11.63)
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so we get

{Fm, Fn} = 2Lm+n + B(m)δm+n , B(m) = 1
2
Dm2 . (11.64)

Finally, the commutator [Lm, Ln] can be computed. One finds,

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n , (11.65)

with

A(m) = 1
8
Dm3 , (Ramond) ,

A(m) = 1
8
D(m3 −m) , (Neveu-Schwarz) . (11.66)

Again, this is before imposing gauge constraints, such as in the next section. Eq. (11.65)
is to be compared to the expression (4.26) for the bosonic case.

To reproduce Eqs. (11.66) is a useful exercise: if we split Lm into a Bose part and a
Fermi part: Lm = LB

m + LF
m , then the bosonic part gets a contribution as in Eq. (4.26)

for each of the contributing dimensions:

[LB
m, LB

n ] = (m− n)LB
m+n + D

12
m(m2 − 1)δm+n , (11.67)

the fermionic contribution is then found in a similar way to obey

[LF
m, LF

n] = (m− n)LF
m+n + D

24
m(m2 − 1)δm+n (Neveu-Schwarz), (11.68)

[LF
m, LF

n] = (m− n)LF
m+n + D

24
m(m2 + 2)δm+n (Ramond), (11.69)

Again, in the summations, a limited number of terms have to be switched into the normal
order position, and this gives rise to a finite contribution to the central charge term. The
first result comes from adding half-odd-integer contributions, while in the second case, as
before, we have had to take into account that d 2

0 = 1
2
.

Note, that Eq. (11.64) implies that F 2
0 = L0 , so if we have a state with F0|ψ〉 = µ|ψ〉 ,

then also L0|ψ〉 = µ2|ψ〉 , and so also the vacuum values for L0 and F0 are linked.

Often, we will first only take the transverse modes, in which case D must be replaced
by D − 2.

11.8. The light-cone gauge for fermions

On top of the gauge fixing condition Jα(τ, σ) = 0, which is analogous to Tαβ = 0 for the
bosonic case, there is the fermionic counterpart of the coordinate fixing condition X+ = τ ,
which we referred to previously as the light-cone gauge. Since ψ+ is the superpartner of
X+ , one imposes the extra condition

ψ+
A = ψ0

A + ψD−1
A = 0 (11.70)

(We can omit the superfluous index A , if we define ψ(τ, σ) = ψ+(τ, σ) if σ > 0 and
ψ−(τ,−σ) if σ < 0).
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The subsidiary conditions implied by the vanishing of Jα and Tαβ take the form

ψµ∂+Xµ = 0 ,

(∂+Xµ)2 +
i

2
ψµ∂+ψµ = 0 . (11.71)

Given the gauge choices ∂+X+ = 1
2
p+ and ψ+ = 0, these equations can be solved for the

light-cone components ψ− and ∂+X− :

∂+X− =
1

p+

(
(∂+Xtr)2 + 1

2
iψtr∂+ψtr

)
,

ψ− =
2

p+
ψtr∂+Xtr . (11.72)

In terms of the Fourier modes, this gives (in the NS case)

α−n =
1

2p+

D−2∑

i=1

( ∞∑

m=−∞
: αi

n−mαi
m :

+
∞∑

r=−∞
r : bi

n−rb
i
r :

)
− aδn

p+
; (11.73)

b−r =
1

p+

D−2∑

i=1

∞∑

s=−∞
αi

r−sb
i
s . (11.74)

As in Section (4.3), Eq. (4.14)

As in Section 5, we can again construct the generators of Lorentz transformations,
Jµν . Manipulations identical to the ones described in Section 5, give11

[J i−, J j−] = − 1

(p+)2

∞∑

m=1

∆m(αi
−mαj

m − αj
−mαi

m) , (11.75)

with

∆m = m
(

D − 2

8
− 1

)
+

1

m

(
2a− σ

D − 2

8

)
. (11.76)

Here, the parameter σ = 1 for the Neveu-Schwarz case and σ = 0 for Ramond, as it
derives directly from the commutator (11.66). Since the commutator (11.76) must vanish
for all m , we must have

D = 10 and a = 1
2
σ . (11.77)

11A way to check Eq. (11.75) is to observe that J i− vanishes on the vacuum, so that it suffices to
compute expressions such as [[[J1−, J2−], α1

m], α2
−m] .
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12. The GSO Projection.

We see from the last subsection that the fermionic Ramond sector has no tachyon, and
that there is one tachyon in the bosonic Neveu-Schwarz sector. Also, we found that the
fermionic spectrum is at integer spacings while the bosons are half-integer spaced.

The discovery to be discussed in this section is that one can impose a further constraint
on the states. The constraint is often ‘explained’ or ‘justified’ in the literature in strange
ways. Here, I follow my present preference. Our discussion begins in the vacuum sector
of the Ramond sector. These states are degenerate because we have the d0 operators,
which commute with L0 . As was explained in subsection 11.5, these are just the gamma
matrices Γµ (apart from a factor i

√
2).

12.1. The open string.

We established that the intercept a = 0 in the Ramond sector. This means that the
fermions in the ground state are massless. The question is, how degenerate is this ground
state? What is the degeneracy of all fermionic states?

It so happens that in D = 10 dimensions, massless fermions allow for two constraints.
One is that we can choose them to be Majorana fermions. This means that the gamma
matrices, if normalized as in (11.42), are purely imaginary. Secondly, one can use a Weyl
projection. Like with neutrinos, we can project out one of two chiral modes. The spinors
of this chiral mode are only 8 dimensional. To understand these, we begin with the generic
construction of (real, positively normalized) gamma matrices in D dimensions:

• In 3 dimensions, we can use the 3 Pauli matrices τ 1, τ 2, and τ 3 , which are 2 × 2
matrices and obey {τ i, τ j} = 2δij .

• If we have matrices γα in d dimensions, obeying {γα, γβ} = 2δαβ , then we can
construct two more, to serve in d̃ = d + 2 dimensions, by choosing a Hilbert space
twice as big:

γ̃α =
(

0 γα

γα 0

)
, γ̃d+1 =

(
0 −i
i 0

)
, γ̃d+2 =

(
1 0
0 −1

)
, (12.1)

which we often write in a more compact form:

γ̃α = γα × τ 1 , γ̃d+1 = 1× τ 2 , γ̃d+2 = 1× τ 3 (12.2)

(of course, the τ matrices may be permuted here).

Thus we see that in d = 2k and d = 2k + 1 dimensions, the gamma’s are matrices acting
on spinors with 2k = 2d/2 or 2(d−1)/2 components. How can we understand this in terms
of the dµ

n operators of the string modes?

The situation with the dµ
n for n 6= 0 is straightforward: for each µ and each n > 0,

the operators dµ
−n and dµ

n together form the creation and annihilation operators for a
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fermionic Hilbert space of two states:

dµ
−n = dµ †

n ; {dµ
n, dν †

n } = δµν . (12.3)

These however are independent operators only for the D − 2 transverse dimensions in
the light-cone formalism: we have d+

n = 0 and d−n are all determined by the supergauge
constraint. Thus for each pair (n, −n) we have D − 2 factors of 2 in our Hilbert space.
Naturally, for the single case n = 0, there will be D−2

2
factors of two. Since D = 10, the

zero mode spinors should be 24 = 16 dimensional.

Indeed, formally one can construct the gamma’s out of the dµ
0 ’s pairwise. Write µ = 2i

or µ = 2i− 1, where i = 1, · · · , 4. Then

bi = 1
2
(γ2i + iγ2i−1) ,

bi† = 1
2
(γ2i − iγ2i−1) , γµ =

√
2 dµ

0 ,

{bi, b j} = 0 , {bi, b j†} = δ ij , i, j = 1, · · · , 4 . (12.4)

The 4 operators bi and bi† are fermionic annihilation and creation operators, and hence
each of them demands a factor 2 degeneracy in the spectrum of states. The fact that we
must limit ourselves to real spinors (Majorana spinors), is a consequence of supersymmetry
(after all, the Xµ operators are real also). Limiting oneself to real spinors is not so easy.
The gamma matrices constructed along the lines of the argument given earlier would
have real and imaginary components. A slightly different arrangement, however, enables
us to find a representation where they are all real. If τ 1 and τ 3 are chosen real and τ 2

imaginary (as is usually done), we can choose the 8 gamma’s as follows:

γ1 = τ 2 × τ 2 × τ 2 × τ 2 , γ2 = 1 × τ 1 × τ 2 × τ 2 ,
γ3 = 1 × τ 3 × τ 2 × τ 2 , γ4 = τ 1 × τ 2 × 1 × τ 2 ,
γ5 = τ 3 × τ 2 × 1 × τ 2 , γ6 = τ 2 × 1 × τ 1 × τ 2 ,
γ7 = τ 2 × 1 × τ 3 × τ 2 , γ8 = 1 × 1 × 1 × τ 1 , (12.5)

We see that here, differently from the construction in Eq. (12.2), all gamma’s contain an
even number of τ 2 matrices, so they are all real. The matrices Γµ , used earlier, obey the
commutation rule {Γµ, Γν} = −2ηµν , so, because of the minus sign, they then become
imaginary, for all spacelike µ .

The representation (12.5) is unitarily equivalent to the construction following (12.2),
because all representations of gamma matrices in an even number of dimensions are equiv-
alent.

To obtain the full Dirac equation, we first must add two more gamma’s. Following a
procedure such as in (12.2), γ9 = 1×1×1×1×τ 1 and γ0 = 1×1×1×1×iτ 2 (if the others
are multiplied with τ 3 ). They are still real, but they force us to use a 32 dimensional
spinor space. The Dirac equation, (m + Γµpµ)ψ = 0, with p2 = −m2 , then projects
out half of these, which is why the allowed spinors form the previously constructed 16
dimensional set.
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The Dirac equation can be understood to arise in the zero mode sector in the following
way. Note that

γ+ = γ0 + γ9 = τ 1 + iτ 2 = τ 1(1− τ 3) . (12.6)

If we limit ourselves to the sector τ 3|ψ〉 = +|ψ〉 , then γ+ = 0, in accordance with our
supersymmetry gauge condition (11.70). The constraint equation (11.74) in the Ramond
sector now reads

p+γ− = piγi +
√

2
∑

n6=0

αi
−nd

i
n . (12.7)

On the zero state, the right hand side is zero, and so we see that this state obeys

(−γ+p− − γ−p+ + γipi)|ψ〉 = 0 .

For the non-zero modes, the right hand side will generate mass terms.

The analogue of γ5 in 4 dimensions is here

Γ11 =
9∏

µ=0

Γµ . (12.8)

It, too, is real. As in four dimensions, the massless Dirac equation allows us to use
1
2
(1±Γ11) as projection operators. But, unlike the 4 dimensional case, this chiral projector

is real, so it projects out real, chiral Majorana states. From (12.8) it is clear that Γ11 acts
within our 16 dimensional space, where it is12

Γ11 =
8∏

µ=1

γµ = 1 × 1 × 1 × τ 3 . (12.9)

Thus, the massless fermionic string modes in the Ramond sector have two, conserved,
helicities, depending on the Lorentz-invariant value of Γ11 = ±1.

It was the discovery of Gliozzi, Scherk and Olive (GSO) that one can impose a further
constraint on the superstring. In the zero mode sector of the Ramond case, it amounts to
keeping just one of the two helicities: Γ11|ψ〉 = +|ψ〉 . These |ψ〉 form an 8 dimensional
real spinor.

What will this constraint imply for the massive sectors and for the Neveu-Schwarz
sector? To answer this, let us look at the condition on the (σ τ) world sheet. Γ11

anticommutes with all dµ
0 . We generalize this into an operator called Γ in Green,

Schwarz and Witten, which anticommutes with all ψµ(σ, τ). In the light-cone gauge,
this operator can be interpreted as a formal product over all of σ space: using the fact
that the transverse components of ψµ(σ, 0) essentially commute as gamma matrices do,
{ψi(σ), ψj(σ′)} = δijδ(σ − σ′), we define

Γ = C
8∏

σ, µ=1

ψµ(σ, 0) , (12.10)

12times a factor τ3 , but in our 16-dimensional subspace, that is one.
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where C is a (divergent) constant adjusted to make Γ
2

= 1. We find that this operator,
made from the existing operators of the theory, anticommutes with all ψµ(σ, τ), including
indeed also ψ+ (which is zero) and ψ− , which, due to the light-cone gauge condition,
depends linearly on all transverse fermionic fields.

The property {Γ, dµ
0} = 0 and the condition Γ|ψ〉 = |ψ〉 selects out the chiral Majo-

rana mode described by the 8-component spinor in the Ramond zero sector. If we impose
Γ = 1 on the other, massive, modes of the Ramond sector, we find that the surviving
modes are

dµ1
−n1

· · · dµN−nN
| 0〉± , (12.11)

where the ± sign refers to the helicity eigenstate, and it is plus if N even and minus if
N odd.

How does Γ act in the Neveu-Schwarz sector? Since Γ commutes with L0 , and since
the ground state is non-degenerate, the ground state is an eigenstate of Γ. If it has
eigenvalue +1, then all states created by an operator bµ

−r exactly once, have eigenvalue
−1, and so on. GSO projection would then select out all states created by an even
number of the fermionic bµ

−r operators. But we can also assume that the ground state has
eigenvalue −1. In that case, we only keep the states created by an odd number of bµ

−r .

This latter choice has two important features. One is, that the only remaining tachy-
onic state, the Neveu-Schwarz ground state, is now eliminated. The other important
aspect is that now the spectrum of bosonic Neveu-Schwarz states precisely matches the
fermionic Ramond states: since, in Neveu-Schwarz, a = 1

2
, its first excited state is mass-

less, like the Ramond fermions, and furthermore, since µ takes on D−2 values, this state
is also 8-fold degenerate. All other surviving Neveu-Schwarz states now have integer val-
ues for 1

2
M2 , as the Ramond states do. The fact that, in the light-cone gauge, all massive

Ramond states match with states in the Neveu-Schwarz sector, is related to a curious
mathematical theorem that is not easy to prove. A way to calculate the degeneracy of
the spectrum is briefly discussed in the next subsection. A curious feature is that the
8 representation of SO(8) is vectorlike in the Neveu-Schwarz sector, while it is a spinor
in the Ramond sector. If D − 2 were different from 8, these representations would not
have matched. This situation is further explained in the Green-Schwarz-Witten book,
Appendix 5A and B.

The GSO projection enables us to have a tachyon-free string spectrum. It could have
been brought forward that the Ramond sector was also tachyon-free, but that sector only
contains fermionic states. Anyway, we still have to check the closed string.

12.2. Computing the spectrum of states.

The general method to compute the number of states consists of calculating, for the entire
Hilbert space,

G(q) =
∞∑

n=0

Wnq
n = Tr qN , (12.12)
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where q is a complex number corresponding to 1/z = e−iτ , as in Eq. (10.3), Wn is the
degree of degeneracy of the nth level, and N is the number operator,

N =
D−2∑

µ=1

( ∞∑

n=1

α−nαn +
∑

r>0

rd−rdr

)
=

D−2∑

µ=1

( ∞∑

n=1

nNBos
µ, n +

∑

r>0

r NFerm
µ, r

)
, (12.13)

where the sum over the fermionic operators is either over integers (Ramond) or integers
+1

2
(Neveu-Schwarz). Since N receives its contributions independently from each mode,

we can write G(q) as a product:

G(q) =
D−2∏

µ=1

∞∏

n=1

∏

r>0

fn(q)gr(q) , (12.14)

with

fn(q) =
∞∑

m=0

qnm =
1

1− qn
, (12.15)

while

gr(q) =
1∑

m=0

qrm = 1 + qr . (12.16)

We find that, for the purely bosonic string in 24 transverse dimensions:

G(q) =
∞∏

n=1

(1− qn)−24 . (12.17)

The Taylor expansion of this function gives us the level density functions Wn . There are
also many mathematical theorems concerning functions of this sort.

For the superstring in 8 transverse dimensions, we have

G(q) =
∞∏

n=1




1 + qn−1
2

1− qn




8

(NS) ;

G(q) = 16
∞∏

n=1

(
1 + qn

1− qn

)8

(Ramond) , (12.18)

where, in the Ramond case, the overall factor 16 comes from the 16 spinor elements of
the ground state.

Now let us impose the GSO projection. In the Ramond case, it simply divides the
result by 2, since we start with an 8 component spinor in the ground state. In the NS
case, we have to remove the states with even fermion number. This amounts to

G(q) = 1
2
Tr

(
qN − (−1)F qN

)
, (12.19)
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where F is the fermion number. Multiplying with (−1)F implies that we replace g(r) in
Eq. (12.16) by

g̃(r) =
1∑

m=0

(−q)rm = 1− qr . (12.20)

This way, Eq. (12.18) turns into

GNS(q) =
1

2
√

q



∞∏

n=1

(
1 + qn−1

2

1− qn

)8

−
∞∏

n=1

(
1− qn−1

2

1− qn

)8


 (NS) ;

GR(q) = 8
∞∏

n=1

(
1 + qn

1− qn

)8

(Ramond) . (12.21)

Here, in the NS case, we divided by
√

q because the ground state can now be situated at
N = −1

2
, and it cancels out.

The mathematical theorem alluded to in the previous subsection says that, in Eq.
(12.21), GNS(q) and GR(q) are equal. Mathematica gives for both:

G(q) = 8 + 128 q + 1152 q2 + 7680 q3 + 42112 q4 + 200448 q5

+ 855552 q6 + 3345408 q7 + 12166272 q8 + · · · . (12.22)

12.3. String types.

In closed strings, we have the same situation. We add fermions both to the left-movers
and the right-movers, and first impose super symmetry in the world sheet. In the open
string, left- and right movers were identical, since they reflect into one another at the end
points. In closed strings, we only have the periodicity conditions. As stated earlier, this
means that there are four sectors, the R-R, R-NS, NS-R and NS-NS sectors, depending
on whether there is a twist in the boundary conditions or not.

In all of these sectors, we impose GSO projection, both to the left-movers and the
right movers. Imposing Γ̄|ψ〉 = +|ψ〉 , implies a certain chirality to the resulting state:

1
8!
εµ1µ2···µ8γ

µ1γµ2 · · · γµ8|ψ〉 = +|ψ〉 . (12.23)

The absolute sign here depends on the definition of ε and the orientation of the coordi-
nates. But the relative sign for the left- and the right-movers is physically relevant. In
the open string, it has to be the same. In the closed string, we can also choose the sign
the same, or we may decide to have opposite chiralities.

The theory with the same chirality left and right, where open string solutions are
allowed (but closed ones also) is called ‘type I’. As we will see later, we will have the option
of attaching quantum numbers at the end points of the open string. Imagining ‘quarks’ at
the end points, we attach two indices to the open string states: |ψ〉 → |ψ, ab〉 . If this were
a quark theory, this would lead to an overall symmetry of the form U(N)×U(N). Also,
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the zero mass state would now be a vector particle described by a field in the adjoint
representation of dimension N2 of U(N). According to Quantum Field Theory, such
objects can only be understood as Yang-Mills fields, but this means that the quantum
numbers of this field must be those of the generators of a local gauge group. Besides
the group U(N), one may have one of the orthogonal groups SO(N). In that case, the
adjoint representation that the field is in, is a real, antisymmetric tensor: Aµ

ab = −Aµ
ba .

For a string, this means that interchanging the end points is to be used as a symmetry
transformation Ω, and we should restrict ourselves to those states that have Ω|ψ〉 =
−|ψ〉 . Now Ω replaces the coordinate σ by π − σ , which means that all modes that go
with cos nσ where n is odd, switch signs. Consequently, all states that have an odd value
for α′M2 , switch sign under Ω. Therefore, the fields of the massive states transform as
tensors Aab in SO(N) such that Aab = ±Aba , with the + sign when α′M2 is odd, and
the minus sign when α′M2 is even.

The above was concluded merely by looking at the massless states and interpreting
them as gauge fields. Actually, one must check the consistency of the entire string theory.
This leads to more constraints: the open string only allows SO(32) as a gauge group.
The symmetry under the parity operator Ω implies that this string is non-orientable. It
can undergo transitions into closed strings (by having end points merge), provided these
closed strings are also non-orientable. This constitutes the ‘type I’ superstring theory.

If the string does not have end points, it may be orientable. This will be called
a string theory of ‘type II’. We can choose the sign of the chirality for left- and right
movers opposite. This will be called a string theory of ‘type IIA’. Because of the opposite
chiralities, the IIA theory as a whole is left-right symmetric. If the chiralities of left and
right movers are equal, the string is of ‘type IIB’. In this theory, the string modes are
left-right asymmetric.

Finally, we have the so-called ‘heterotic string theories’. One chooses the fermions such
that they move to the right only. In the left-moving sector, we must choose extra degrees
of freedom in order to saturate the algebraic conditions that lead to Lorentz-invariance.
There are different ways to do this. One possibility is to put there 16 more bosonic fields,
but this gives a problem with the zero modes. If our 16 bosonic fields were unconstrained,
these zero modes would lead to an infinite degeneracy that we do not want in our theory.
Therefore, one must compactify these bosonic dimensions. Assume for the moment that
we have a 16-dimensional torus. The bosonic part of the theory, in these 16 compactified
dimensions (now labled by the index I ), then looks as follows:

XI(σ, τ) = qI + pIτ + wIσ +
i

2

∑

n 6=0

1

n
αI

ne2in(σ−τ) . (12.24)

Here, pI is the c.m. momentum, and wI are the winding distances (see Chapter 9 on
T -duality).

The reason why we need compactification on a torus of a fixed size R , is that the
excitations (12.24) may only depend on one coordinate σ− = τ − σ . Therefore,

wI = −pI . (12.25)
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Here, the allowed momenta pI form a lattice, and we must insist that the winding distances
wI form the same lattice. This led physicists to the study of self-dual lattices. The
appropriate lattices are said to exist only in 16 dimensions, leading to either the group
SO(32) or E8×E8 for the heterotic string (to be explained later). Also, a procedure akin
to the GSO projection is needed here to remove the tachyon.

13. Zero modes

In the low-energy limit, only the massless modes are seen. They interact with one another
in a special way, and it is important to learn about the properties and interactions of these
states. Let us enumerate the different ‘theories’ and their distinct sectors.

• The open superstring (type I). Here, we have two sectors:

– Ramond: There is one chiral spinor |ψ〉 with 2D/2−2 = 23 = 8 real components:
ψ(x).

– Neveu-Schwarz: There is one vector field (the “photon”), obtained from the
GSO-excluded vacuum state | 0〉 as follows: b i

−1/2| 0〉 = Ai(x). It has D−2 = 8
components.

These states are then each given their Chan-Paton coefficients, so that their degen-
eracy is multiplied by 1

2
N × (N − 1) = 496 (to be discussed later).

• Closed Superstring Type IIA. Here, the left- and right modes (to be referred to by
the letters L and R) each have their R and NS sectors, and each of these sectors
requires a GSO projection:

– NS-NS: The only massless states are

b i, L
−1/2 b j, R

−1/2| 0, 0〉 = Aij(x) . (13.1)

As a representation of the transverse SO(8), it splits into

∗ a scalar φ(x)δ ij → 1 (the “dilaton”),

∗ an antisymmetric tensor field B ij(x) = −B ij(x) with dimension
1
2
(D − 2)(D − 3) = 28 (the “axion”), and

∗ a traceless symmetric tensor field G ij(x) = G ji(x) with G ii = 0, having
dimension 1

2
(D − 2)(D − 1)− 1 = 35 (the “graviton”).

– NS-R: A vector times a chiral spinor: b i, L
−1/2| 0, ψ〉 = ψ i(x). It splits into

∗ a chiral spin 1
2

spinor: ψ(x) = Γ iψ i(x) of dimension 8 (the “dilatino”),
and

∗ a spin 3
2

field ψ i(x) with Γ iψ i = 0 (the “gravitino”). It has dimension
(D − 2)2 − 8 = 56 .

– R-NS: Same as above:
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∗ a dilatino of dimension 8 , and

∗ a gravitino of dimension 56 .

The chiralities of these states are opposite to those of the NS-R states.

– R-R: A left chiral spinor times a right chiral spinor, 8L×8R . The way it splits
up in representations of SO(8) can be derived by writing it as |ψR〉〈ψL| . The
components of this double-spinor can be determined by sandwiching it with
strings of gamma matrices: 〈ψL|Γ i1 · · ·Γ ik |ψR〉 . Now, the GSO projector Γ̄
gives

Γ̄|ψL〉 = +|ψL〉 ; Γ|ψR〉 = −|ψR〉 , (13.2)

since, in type IIA, the left- and right-chiralities are opposite. This implies that

ΓΓ i1 · · ·Γ ik |ψL〉 = (−1)kΓ i1 · · ·Γ ik |ψL〉 , (13.3)

and since all inner products between states with opposite chiralities vanish,
only odd series of gammas (having k odd), contribute. Also, these states have

ΓΓ1 · · ·Γk = Γ8 · · ·Γk+1 , (13.4)

so that, if we have series with more than 4 gammas, they can be expressed as
series with fewer gammas. From this, it is concluded that these 64 states split
into:

∗ one vector state 〈ψL|Γi|ψR〉 = Ci(x) → 8 , and

∗ an antisymmetric 3-tensor field Cijk = 〈ψL|ΓiΓjΓk|ψR〉 of dimension
8·7·6
3!

= 56 .

• Closed superstring of type IIB : The first three sectors are as in the type IIA super-
string:

– NS-NS:

∗ One scalar field, 1 ;

∗ an antisymmetric field B ij = −B ji → 28 , and

∗ a symmetric traceless graviton Gij = Gji ; Gii = 0 → 35 .

– NS-R and R-NS (here each having the same chirality) :

∗ A spin 1
2

chiral Majorana field ψ of dimension 8 (dilatino), and

∗ a gravitino field ψi of spin 3
2
, of dimension 56 .

But the RR state is different:

– RR: The 8L×8L state only admits even series of gamma matrices, so we have

∗ a scalar field, C(x) = 〈ψL|ψL〉 , dimension 1 ,

∗ an antisymmetric rank 2 tensor C ij = −C ji = 〈ψL|ΓiΓj|ψL〉 → 28 , and

∗ a self-dual antisymmetric 4-tensor field Ci1···i4 = 〈ψL|Γi1 · · ·Γi4|ψL〉 →
1
2

(
8·7·6·5

24

)
= 35 .
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• The closed type I superstring is as type IIB, except for the fact that these strings are
non-orientable — there is a symmetry σ ↔ π − σ . this means that we have half as
many states. Thus, there is only one of each of the representations 1,8,28,35 and
56 . To be precise, in the NS-NS sector the axion field Bij , and in the R-R sector
the scalar C(x) and the 4-tensor Ci1i2i3i4 are odd under Ω so that they disappear
from the spectrum. Under Ω, the R-NS sector transforms into the NS-R sector, so
that only the even superpositions of these states survive.

We see that the type I theory has one gravitino, the type IIA theory has two gravitino
modes with opposite chirality, and the type IIB theory has two gravitinos with equal
chirality. These things imply that the target space has a local supersymmetry, since
only theories with local supersymmetry (supergravity theories) allow for the existence
of an elementary spin 3

2
gravitino field. As type I superstrings have only one gravitino,

they have a target space N = 1 local supersymmetry. The other theories have local
supersymmetry with N = 2, since they have two gravitinos. In view of the chiralities of
the gravitinos, the associated supergravity theories are different, and they are also labeled
as type IIA and type IIB.

• The Heterotic Strings. Here, we distinguish the zero modes due to excitations in the
10 physical dimensions from the ones on the self-dual, compactified 16-torus. Since
the fermions only move to the right, we have single NS and R modes. From the 10
physical dimensions:

– The NS sector contains the bosons:
αi L
−1 bj R

−1/2| 0, 0〉 = Aij → 8× 8 , which, as before, splits up into

∗ a scalar 1 ,

∗ an antisymmetric tensor Bij → 28 , and

∗ a symmetric, traceless graviton field Gij → 35

– The R sector contains the fermions:
αi R
−1| 0, ψ〉R = ψi(x), which splits up into

∗ a chiral 8 , and

∗ a gravitino 56 .

Both sectors have 64 states in total.
From the compactified dimensions:

– Bosons in the NS sector:

∗ αI, L
−1 b i R

−1/2| 0, 0〉 → 16× 8 ;

∗ bi R
−1/2| ~p 2

L = 2, 0〉 → 480× 8 .

Together, they form an 8 component vector in the 1
2
· 32 · 31 representation of

either SO(32) or E8 × E8 .

– Fermions in the R sector:

∗ αI L
−1 | 0, ψ〉 → 16× 8 , and

∗ | ~p 2
L = 2, ψ〉 → 480× 8 .
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13.1. Field theories associated to the zero modes.

As we suggested already at several locations, the zero mass solutions must be associated to
fields that correspond to a very specific dynamical system in the low-energy domain. This
domain is also what we are left over with if we take the limit where the slope parameter
α′ tends to zero. This is called the zero-slope limit. We are now interested in the field
theories that we get in this limit. In particular, the question may be asked what kind of
couplings will be allowed between these fields.

The open type I string theory was already discussed in this limit. We have a chiral
Majorana field, obeying the Dirac equation,

Γµ∂µψ = 0 . (13.5)

Apart from the demands that this field is chiral and Majorana, there are no symmetries to
be imposed, so interactions with this field can easily be described by terms in an effective
Lagrangian. The spin-one mode, however, must be described by a vector field Aµ(x),
where µ = 1, · · · 10, of which only the 8 transverse components represent physical degrees
of freedom. In particle physics, this situation can only be handled if this vector field
is a gauge field. In the most general case, we have N components of such fields, Aa

µ ,
a = 1, · · · , N and the index a is associated to the generators of a Lie-group:

[T a, T b] = ifabcT
c , (13.6)

where fabc are the structure constants of the group. All interactions must be invariant
under the Yang-Mills gauge transformation, its infinitesimal form being

Aa
µ → Aa′

µ = Aa
µ − ∂µΛa + fabcΛ

bAc
µ , (13.7)

while other fields may transform as

φ → φ′ = φ + iΛaT aφ . (13.8)

Here, Λa = Λa(x, t) depends on space and time.

The Lagrangian must be such that the kinetic terms for the physical components are
as usual: (∂0A

tr)2 − (∂iA
tr)2 . This is achieved by the Yang-Mills Lagrangian:

L = −1
4
Ga

µνG
a
µν ,

with Ga
µν = ∂µA

a
ν − ∂νA

a
µ + fabcA

b
µA

c
ν . (13.9)

The bilinear part of this Lagrangian is, after partial integration,

L = −1
2
(∂µA

a
ν)

2 + 1
2
(∂µA

a
µ)2 . (13.10)

We can fix the gauge by demanding Λa to be such that, for instance, ∂iA
a
i = 0, so

that, in momentum space, the component of A in the spacelike ~p direction vanishes. In
momentum space, we then have

L = −1
2
(pµA

a
ν)

2 + 1
2
(pµA

a
µ)2 = −1

2
(~p2 − p2

0)A
a 2
tr + 1

2
(~p 2 − p2

0)A
a 2
0 + 1

2
p2

0A
a 2
0 . (13.11)
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For the A0 term, we see that the p0 dependence cancels out, so that Aa
0 cannot propagate

in time. It just generates the Coulomb interaction. Only the 8 transverse components
survive.

Now, let us concentrate on the massless modes of the closed string. They all have
a symmetric, two-index tensor, Gµν . As was the case for the vector fields, only the
transverse components of this vector field propagate. An ‘ordinary’ massive spin-two
particle would have a symmetric field of which 1

2
D(D−1)−1 = 44 components propagate.

To reduce this number to 1
2
(D − 1)(D − 2) − 1 = 35, we again need a kind of gauge-

invariance. The gauge transformation must be

Gµν → Gµν ′ = Gµν + ∂µU
ν + ∂νU

µ + higher order terms. (13.12)

This was also seen before: it is the infinitesimal coordinate transformation in General
Relativity,

g′µν(x) =
∂(x + u)α

∂xµ

∂(x + u)β

∂xν
gαβ(x + u(x))

= gµν(x) + ∂µuν + ∂νuµ + higher orders. (13.13)

Indeed, in GR, one can choose the gauge condition gµ0 = −δµ0 , after which all modes
with one or two indices either in the time direction or in the momentum direction, all
become non-propagating modes. Only the transverse helicities of the graviton fields sur-
vive. The massless, symmetric, spin two modes of the superstring evidently describe the
gravitational field in target space.

In the NS-R and the R-NS modes, we now also have spin 3
2

modes. They have 56
components each, and even if we would add the 8 spin 1

2
fields, we would have less than

the 9.16−16 components of a massive spin 3
2

field (which cannot be chiral), so, here also,
there must be some gauge invariance. This time, it is local target space supersymmetry.
We have the different type I, type IIA and type IIB 10-dimensional supergravity theories.
The gauge transformation is

ψµ → ψ′µ = ψµ + ∂µε , (13.14)

where ε(x) is an 8 component Majorana supersymmetry generator field.

According to supergravity theory, the fermionic and kinetic part of the action can be
written as

−iψµ Γµ% σ∂%ψσ , (13.15)

where

Γµ% σ =
{

ΓµΓ%Γσ if µ, % and σ are all different,
0 if µ = % , µ = σ , or % = σ .

(13.16)

Because of the antisymmetry of Γµ% σ , Eq. (13.15) is invariant under the space-time de-
pendent transformation (13.14). One can fix the gauge by choosing

Γµψµ = 0 , (13.17)
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as this fixes the right hand side of Γµ∂µε in (13.14). Writing

Γµ% σ = ΓµΓ%Γσ − δµ%Γσ − δ % σΓµ + δµσΓ % (13.18)

(which one simply proves by checking the cases where some of the indices coincide), we find
that, in this gauge, the wave equation following from (13.15), Γµ% σ∂%ψσ = 0, simplifies
into

−Γµ∂%ψ% + Γ%∂%ψµ = 0 . (13.19)

Multiplying this with Γµ then gives, in addition to (13.17),

D∂%ψ% − (2δ% µ − Γ%Γµ)∂%ψµ = 0 → ∂µψµ = 0 (13.20)

(since D > 2). This turns (13.19) into the ordinary Dirac equation Γ∂ ψµ = 0.

The mass shell condition is then p2 = 0. In momentum space, at a given value pµ of
the 4-momentum, the wave function can be split up as follows:

ψµ = εi
µψi + pµψ

(1) + p̄µψ
(2) , (13.21)

where p̄µ = (−1)δµ0
pµ and εi

µ is defined to be orthogonal to both pµ and p̄µ , so that
this part of the wave function is purely transversal. The mass shell condition gives p2 =
0 , pµp̄µ > 0 . Thus, Eq. (13.20) implies

ψ(2) = 0 . (13.22)

Furthermore, the contribution of ψ(1) can be eliminated by performing an on-shell gauge
transformation of the form (13.14). So, we see that indeed only the completely transverse
fields survive. The gauge condition (13.17) also selects out only those fields that have
Γiψi = 0. This way we indeed get on-shell the 56-component gravitino field. The type I
theory requires only one chiral supersymmetry generator ε , the type II theories require
two.

An interesting case is the massless scalar field φ(x). We see that all closed string
models produce at least one of such modes. Of course, there is no mathematical difficulty
in admitting such fields, although in the real world there is no evidence of their presence.
Since this scalar appears to be associated with the trace of the Gµν field, its interactions
often appear to come in the combination eφ√g R . It is therefore referred to as the ‘dilaton
field’. Dilatons also arise whenever one or more dimensions in a generally relativistic
theory are compactified:

gµν →
(

g̃µν Aµ

Aµ φ

)
. (13.23)

The fact that our theories are generating massless scalar fields might suggest that they
are related to a system in 11 or 12 dimensions. Indeed, supergravity can be formulated
in up to 11 dimensions, and one finds that the dilaton emerges as part of the N = 2
supermultiplet after Kaluza-Klein reduction to 10 dimensions.
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13.2. Tensor fields and D-branes.

So-far, the fields we saw were recognizable from other field theories. But what do the com-
pletely antisymmetric tensor fields Bµν , Cµν , Cλµν and the self-dual Cµ1···µ4 correspond
to?

In conventional, 4 dimensional field theories, such fields do not generate anything
new. The antisymmetric tensor Bµν has only one component in the transverse direction:
1
2
(D− 2)(D− 3) = 1. This is a spinless particle, and such particles are more conveniently

described using scalar fields. In higher dimensions, however, they represent higher spin
massless particles. If we use fields Cµ1···µk to describe such particles in a Lorentz-covariant
way, we again encounter the difficulty that the timelike components should not represent
physical particles. Again, local gauge-invariance is needed to remove them all. We demon-
strate this for the case k = 2, the higher tensors can be treated in a completely analogous
way. Let the dynamical field be Bµν = −Bνµ . Introduce the ‘field strength’

Hλµν = ∂λB
µν + ∂µB

νλ + ∂νB
λµ . (13.24)

H is completely antisymmetric in its indices. The kinetic part of our Lagrangian will be

L = − 1
12

HλµνHλµν . (13.25)

This ‘theory’ has a local gauge invariance:

Bµν → Bµν ′ = Bµν + ∂µζ
ν − ∂νζ

µ , (13.26)

where ζµ(x) may depend on space-time. Note that Hλµν is invariant under this gauge
transformation. Note also, that ζµ itself has no effect if it is a pure derivative: ζµ =
∂µζ(x). As we did in the Lagrangian (13.9), we choose a ‘Coulomb gauge’:

piB
iµ = 0 , (13.27)

where i only runs over the spacelike components (this gives a condition on ∂2
i ζ

µ , and
since we can impose ∂iζ

i = 0, it can always be fulfilled). In momentum space, take ~p in
the (D − 1)-direction. Then we split Bµν as follows:

B(tr) = Bij , i, j = 1, · · ·D − 2 , B(1) = Bi D−1 ,

B(2) = Bi0 , B(3) = B0 D−1 . (13.28)

B(1) and B(3) are put equal to zero by our gauge condition. The Lagrangian is then

L = −1
4
p2

µ (B ij
(tr))

2 + 1
2
~p 2 (B i0

(2))
2 . (13.29)

Exactly as in the vector case, described in Eq. (13.11), the time component B(2) , does
not propagate in time, since it only carries the spacelike part of the momentum in its
Lagrangian. it generates a force resembling the Coulomb force.

Curiously, the gauge group (13.26) is Abelian for all higher tensors — only in the
vector case, we can have non-Abelian Yang-Mills gauge transformations. It is not known
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how to turn (13.26) into a non-Abelian version, and, actually, this is considered unlikely
to be possible at all, and neither is it needed. The tensor fields do have a remarkable
physical implication.

String theory does produce interactions between strings. We have seen in Chapter 6
how to compute some of these, but tree diagrams as well as loop corrections showing all
sorts of interactions of merging and splitting strings can all be computed unambiguously.
So we do have interactions between these fields. The equations of motion for the anti-
symmetric tensor fields therefore contain nonlinear terms to be added into our linearized
equations such as ∂λH

λµν = 0. So, the zero modes, as well as the massive string modes,
will all add contributions to the source Jµν in

∂λH
λµν = Jµν . (13.30)

Now notice that these sources are conserved:

∂µJ
µν = 0 . (13.31)

This follows from the antisymmetry of Hλµν , and violation of this conservation law would
lead to violation of the gauge symmetry (13.26), which we cannot allow. What kind of
charge is it that is conserved here?

In the Maxwell case. the source is Jµ , and its time component is the electric charge
density, Q =

∫
dD−1~x J0(~x, t). Current conservation implies charge conservation:

dQ(t)/dt = 0. In the case of tensor fields, we have conserved vector charges:

Qν(t) =
∫

dD−1~xJ0ν(~x, t) . (13.32)

Next, we want to see the analogue of charge quantization, Q = Ne , for vector charges.
Consider the component in the 3-direction. The fields Bµ3 and Hλµ3 obey the same
equations as Aµ and F λµ of the Maxwell field, except that ∂/∂x3 is left out: B33 =
H3µ3 = 0. So, the continuity equations not only hold in the D − 1 dimensional space,
but also on the D − 2 dimensional plane x3 = Constant. Furthermore, we have

dQ3

dx3
=

∫
dD−2~x ∂3J

03(~x) = −
∫

dD−2~x
∑
i6=3
i6=0

∂iJ
0i = 0 , (13.33)

so the charge does not change if we move the plane around. We interpret this as a flux
going through the plane. The tensor source describes conserved fluxes.

If these fluxes are quantized then, indeed, we are describing strings going through the
plane x3 = Constant. Thus, the source function suggests that we have ‘charged strings’.

In case of higher tensor fields, this generalizes directly into ‘charged 2-branes’, ‘3-
branes’, etc. This is how we get a first indication that D -branes may be more than
mathematical singularities in string theory — they may emerge as regular solutions of
the string field equations. However, since not all tensor fields emerge in the various types
of string theories, we expect only 1-branes (solitonic strings) if there are 2-tensor fields,
2-branes if there are 3-tensor fields, etc.
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13.3. S -duality.

If we take the massless states but ignore all their interactions, we note that the ‘free’
field theories that they generate in space-time allow for dual transformations. Consider
a theory described by the interaction (13.25). The field equations for Hλµν are obtained
if we extremize the Lagrangian (13.25) for all those fields Hλµν that can be written as a
curl, Eq. (13.24). Also, the functional integral is obtained by integrating exp(i

∫ LdDx)
over all fields H coming from a B field as written in (13.24). A general theorem from
mathematics (very easy to prove) says that the B field exists if and only if Hλµν obeys
a Bianchi equation:

∂κH
λµν ± cyclic permutations = 0 (13.34)

(the sign being determined by the permutations).

We can view this as a constraint on the functional integral. Such a constraint, however,
can also be imposed in a different way. We add a Lagrange multiplier field Kκλµν to our
degrees of freedom. Just as the previous fields, K is completely antisymmetric in all its
indices. Thus, the total Lagrangian becomes13

L = − 1
12

HλµνHλµν + 1
6
iKκλµν∂κH

λµν . (13.35)

The factor i here allows us to do functional integrals — the functional integral over the
K field then produces a Dirac delta in function space, forcing Eq. (13.34) to hold.

By partial integration, we can let ∂κ in Eq.(13.35) act in the other direction. The
Gaussian integral over the H field can now be done. We split off a pure square:

L = − 1
12

(Hλµν − i∂κKκλµν)
2 − 1

12
(∂κKκλµν)

2 . (13.36)

The square just disappears when we integrate over the H field (with a contour shift in a
complex direction), so only the last term survives. It is actually more convenient now to
replace the K field by its ‘dual’,

Aµ1···µD−4 = 1
4!
εµ1···µD−4 κλµνKκλµν , (13.37)

so that the Lagrangian (13.36) becomes14

L = − 1
2·(D−4)!

H̃2
µ1···µD−3

, (13.38)

with

H̃µ1···µD−3
= 1

D−3
(∂µ1Aµ2···µD−3

± cyclic permutations). (13.39)

13In these notes, we do not distinguish upper indices from lower indices in the space-time fields, since
space-time is assumed to be flat. Of course, we do include the minus signs in the summations when a
time component occurs.

14The numerical coefficients, such as 1
12 , 1/(D − 4), etc., are chosen for convenience only. Generally,

one divides by the number of possible symmetry permutations of the term in question, which makes the
outcome of simple combinatorial calculations very predictable.
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We note, that this Lagrangian is exactly like the one we started off with, except that
the fields have a different number of indices, in general. The independent field variable
Bµν is replaced by a field Aµ1···µD−4

; in general the number of indices of the dual A
field is D − 2 minus the number of indices of the B field. Notice that, in 4 dimensions,
the field dual to a two-index field Bµν is a scalar. Notice also that, by eliminating the
B field, we no longer have the possibility to add a mass term for the B field, or even
interactions. Interactions, as well as mass terms, for the A field have entirely different
effects. This duality, called S -duality (S standing for ‘space-time’), holds rigorously only
in the absence of such terms.

In 4 dimensions, the Maxwell field is self-dual, in the absence of currents. This is the
magnetic - electric duality. Electric charges in one formalism, behave as magnetic charges
in the other and vice versa. The Dirac relation,

e · gm = 2πn , (13.40)

where n must be an integer, tells us that, if the coupling constant in an interaction theory
is e , the dual theory, if it exists at all, will have interactions with strength gm = 2πn/e .

Now, return to the zero modes of string theory. We wrote the fields of these modes as
fields with 4 indices or less, because the dual transformation would allow us to transform
the higher fields into one of these anyhow. S -duality pervades the zero mode sector of
string theory.

There are, however, interactions, and how to deal with these is another matter. We
do note that the sources of Cµ1···µk fields are k − 1-branes. The sources of their S -duals
are D− k− 1-branes. The relation between the strengths by which they couple to the C
fields must be as in the Dirac relation (13.40).

Type IIB strings generate fields C with all even numbers of indices. If we S -dualize
the fields, the sources of strength q of the two-index fields are replaced by sources with
coupling strengths 2π/q . Thus, S -duality transforms weakly coupled strings to strongly
couples strings. This, at least, is what string theoreticians believe. Actually, for strings,
the S duality transformation can be turned into a larger group of discrete transformations.

Now, a note about T -duality. This kind of duality can be treated in a manner very
similar to S -duality. Here, we perform the transformation on the Xµ fields on the string
world sheet. Write the Polyakov action as

S = −1
2
T

∫
d2σ(Aµ

α)2 , (13.41)

where Aµ
α is constrained to be the gradient of a field Xµ(σ). This constraint can also be

imposed by demanding

∂αAµ
β − ∂βAµ

α = 0 . (13.42)

So, we introduce the Lagrange multiplier Y µ(σ), a world-sheet scalar because the world
sheet has only two dimensions:

S =
∫

d2σ
(
− 1

2
T (Aµ

α)2 − iεαβY µ∂αAµ
β

)
. (13.43)
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We turn to the dual field Ãµ
α = εαβAµ

β , in terms of which we get

S =
∫

d2σ
(
− 1

2
T (Ãµ

α − i
T
∂αY µ)2 − 1

2T
(∂αY µ)2

)
, (13.44)

where, again, the quadratic term vanishes upon integrating over the Ã field. Note that
the string constant T turned into 1/T . This is because the expression (13.43) can be seen
as a Fourier transform. The exponent of the original action was a Gaussian expression;
the new exponentiated action is the Fourier transform of that Gaussian, which is again
a Gaussian, where the constant in the exponent is replaced by its inverse. If we would
choose the zero mode of Xµ to be periodic, the zero mode of the Y µ field would be on the
Fourier dual space of that, which is a discrete lattice. This is how this zero mode received
a Neumann boundary condition where it had been Dirichlet before. It also explains why
it is said that T duality replaces the string constant T into 1/T .

14. Miscelaneous and Outlook.

String Theory has grown into a vast research discipline in a very short time. There are
many interesting features that can be calculated in detail. However, enthusiasm some-
times carries its supporters too far. Promises are made concerning the ‘ultimate theory
of time and matter’ that could not be fulfilled, and I do not expect that they will, unless
a much wider viewpoint is admitted. String theory appears to provide for a new frame-
work allowing one to numerous hitherto unsuspected structures in field theories. Possibly
strings, together with higher dimensional D -branes, are here to stay as mathematical
entities in the description of particles at the Planck length, but I for one expect that more
will be needed before a satisfactory insight in the dynamical laws of our world is achieved.

In these notes, I restrict myself as much as possible to real calculations that can be
done, while trying to avoid wild speculations. The speculations frequently discussed in
the literature do however inspire researchers to carry on, imagine, and speculate further.
A surprisingly coherent picture emerges, but we still do not know how to turn these ideas
into workable models.

Let me briefly mention the things one can calculate.

14.1. String diagrams

The functional integrals can be generalized to include an arbitrary number of strings
in the asymptotic states. In section 6, we mentioned how to compute interactions with
strings as if they were due to perturbations in the Hamiltonian. One might have wondered
why interactions with ‘external’ strings, being extended objects, nevertheless have to be
represented as point interactions. The reason for this is that string theory does not allow
any of the sources considered to be ‘off mass shell’, that is, disobey their own equations
of motion. So, the external strings have to be on mass shell. In a setting where the
interactions are handled perturbatively, this means that the initial and final strings in an
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interaction are stable objects, entering at time = −∞ and leaving at time = +∞ . The
string world sheet shows these asymptotic states as sheets extended infinitely far in one
dimension τ , with another coordinate σ essentially staying finite. If we now turn to the
conformal gauge, and map this world sheet on a compact complex surface such as the
interior of a circle, then the initial and final strings always show up as singular points on
this surface. Take for instance a single string stretching from σ2 = −∞ to σ2 = +∞ ,
while 0 ≤ σ1 ≤ π (see Section 10). This can be mapped on a circle if we use a coordinate

z =
ieω

1 + ieω
, ω = σ2 + iσ1 . (14.1)

Notice that

z − 1
2

=
ieω − 1

2(ieω + 1)
, (14.2)

so that the end points σ1 = 0 and σ1 = π , where eω = a = real, have

| z − 1
2
| = 1

2
, (14.3)

so this is a circle. The points σ2 = ±∞ are the points 0 and 1.

Similarly, if we have a closed string at an end point, this shows up in a conformal
gauge as a single singular point in the bulk of a string world sheet (rather than at the
boundary, as with open strings). In a conformal treatment of the theory, these singular
points are handled as ‘vertex insertions’, and the mathematics ends up being essentially
as what we did in section 6.

14.2. Zero slope limit

In particular, one can now compute the strength of the interactions of the zero modes.
There is one ‘coupling parameter’ gs , which is the overall coefficient that goes with this
diagram, or the normalization of the functional integral. This coefficient is not fixed.
The interactions can be represented as a low energy effective action. We here give the
results to be found in the literature, limiting ourselves to the bosonic parts only. Note
that the results listed below could be modified by redefinitions of the fields. The field
normalization are usually defined by fixing the kinetic parts in the Lagrangian, but in
theories containing gravity, this could be done in different ways.

14.2.1. Type II theories

The bosonic part for type IIA is:

SIIA
eff =

1

(2π)7

∫
d10x

√
g

{
R− 1

2
(∇φ)2 − 1

12
e−φH2 − 1

4
e3φ/2F 2 − 1

48
eφ/2G2

− 1
2304

1√
g
εµ0···µ9Bµ0µ1Gµ2···µ5Gµ6···µ9

}
. (14.4)
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Here, R is the Riemann scalar. This part is conventional gravity. φ is the dilaton scalar,
and we do notice that it appears exponentially in many of the interactions. It has no mass
term, which means that its vacuum value, 〈φ〉0 is not fixed. This value does determine
the interaction strengths of the other fields, relative to gravity. H2 is the kinetic part of
the B field, Eq. (13.25); F 2 = F µνFµν , where Fµν = ∂µCν − ∂νCµ , and Cµ is the vector
field from the R-R sector. Gµνκλ = ∂µCνκλ + cyclic permutations; it is the covariant curl
belonging to the Cµνλ field in the R-R sector. The last term is an interaction between
the B and the C fields. Notice that it is gauge-invariant upon integration, because the
C fields obey the Bianchi identities: εµ0···µ9∂µ1Gµ2···µ5 = 0.

In the type IIB theory, things are more complicated. It has a rank 4 tensor with
self-dual rank 5 curvature fields. There is no simple action for this, but the equations of
motion can be written down. The same difficulty occurs in type IIB supergrvity, to which
this theory is related.

14.2.2. Type I theory

The effective action for the type I theory is

SI
eff =

1

(2π)7

∫
d10x

√
g
{
R− 1

2
(∇φ)2 − 1

4
eφ/2(F a

µνF
a µν)− 1

12
eφH2

}
. (14.5)

Here, F a
µν is the Yang-Mills field strength associated to the gauge field Aa

µ .

14.2.3. The heterotic theories

The effective action is here:

SH
eff =

1

(2π)7

∫
d10x

√
g
{
R− 1

2
(∇φ)2 − 1

4
e−φ/2(F a

µνF
a µν)− 1

12
e−φH2

}
, (14.6)

where the Yang-Mills field is either that of E8 ×E8 or SO(32). Note the difference with
(14.5): the dilaton field occurs with a different sign.

14.3. Strings on backgrounds

Strings that propagate in a curved space-time can be described by the world sheet action

S = −T

2

∫
d2σ

√
hhαβ∂αXµ ∂βXνGµν(X(σ)) , (14.7)

where now Gµν is a given function of the coordinates Xµ . It turns out, however, that this
only works if, right from the start, Gµν obeys equations that tell us that these fields, also,
are ‘on mass shell’. This means that they must obey Einstein’s equations. Studying the
conformal anomalies (which are required to cancel out) not only gives us these equations,
but also adds higher order corrections to them. The antisymmetric B tensor field can
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also be added to the background, yielding an additive term to the Lagrangian (14.7) of
the form:

+ 1
2

∫
d2σεαβBµν(X) ∂αXµ ∂βXν , (14.8)

where ε is the usual antisymmetric tensor in the world sheet. Note, that this term
transforms covariantly under transformations of the σ coordinates. It is in fact analogous
to electric charge for an elementary particle:

q
∫

dτAµ(x) ∂τx
µ . (14.9)

14.4. Coordinates on D-branes. Matrix theory.

For a string with Dirichlet boundary conditions on a D -brane, one may impose the more
general boundary condition

Xµ(0, τ) = Y µ(u) , (14.10)

where u is a set of p+1 coordinates for the brane. In a flat D -brane, u is just the set of X
coordinates for which we have a Neumann boundary: these X components move along the
brane. Further study of the consistency of this system eventually leads for an expression
for the action of the Y coordinates of the p dimensional D -brane. Strings with both ends
on the same D -brane can move freely on the brane. Their bosonic zero modes, which are
associated to the u coordinates, describe particles living on the D -brane. Strings with
both ends on different D -branes are more complicated to describe, unless the D -branes
coincide, or coincide approximately. In that case, we have coordinates u carrying the
indices i, j of two different branes.

Take the case p = 9, where the D -brane covers all of space-time, and u is just the
general coordinate Xµ itself. Now we see that these coordinates may carry two indices.
this lead to speculations concerning a theory where the coordinates Xµ are promoted to
N ×N matrices X i µ

j . We can describe a set of N free particles by taking the eigenvalues
of the matrix Xµ . The theory is not (yet?) well understood, but its name has already
been discovered: M -theory.

14.5. Orbifolds

Manifolds M , in particular flat manifolds, allow for symmetries under various groups of
discrete coordinate transformations. If we call the group of such a symmetry transfor-
mation S , then requiring this symmetry for all string states implies that the strings are
really living in the space M/S . If S has one or more fixed points on M , then these
remain special points for the string. The presence of these special points reduces the large
groups of continuous symmetries of the system, and indeed may give it more structure.
Orbifolds play an important role in string theory, in particular the heterotic string.
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14.6. Dualities

More and more examples of duality are found. it appears that dualities relate all string
theories to one another. This is sometimes claimed to imply that we really do have only
one theory. That is not quite correct; duality may link the mathematical equations of one
theory to another, but this does not mean that the theories themselves are equal, since
our essentially infinite, four dimensional, space-time is represented in a different way in
these different theories.

14.7. Black holes

Black holes are (also) not the subject of these notes. D -branes wrapped over compactified
dimensions are found to carry gravitational fields, because of their large mass. In special
cases, where the D -brane charge is set equal to the mass, the approximately classical
solution for a collection of a large number of such branes can be described. It appears to
behave much like a black hole with electric charge equal to its mass (called the BPS limit,
after Bogomolnyi, Prasad and Sommerfield). According to the theory of black holes, these
objects must carry entropy :

S = 1
4
(area) . (14.11)

According to statistical physics, entropy also equals the logarithm of the total number of
quantum states such a system can be in. The D -brane sector of string theory appears to
generate the correct number of quantum states.

14.8. Outlook

String theory clearly appears to be strikingly coherent. What seems to be missing
presently, however, is a clear description of the local nature of its underlying physical
laws. In all circumstances encountered until now, it has been imperative that external
fields, in- and outgoing strings and D -branes are required to obey their respective field
equations, or lie on their respective mass shells. Thus, only effects due to external per-
turbations can be computed when these external perturbations obey equations of motion.
To me, this implies that we do not understand what the independent degrees of freedom
are, and there seems to be no indication that these can be identified. String theoreticians
are right in not allowing themselves to be disturbed by this drawback.
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