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Abstract

Abdus Salam was known for his ‘grand views’, grand views of science as well
as grand views of society. In this talk the grand view of theoretical physics is
put in perspective.
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1. Confronting challenges

To obtain the Grand Picture of the physical world we inhabit, to identify the real problems
and distinguish them from technical details, to spot the very deeply hidden areas where
there is room for genuine improvement and revolutionary progress, courage is required.
Every now and then, one has to take a step backwards, one has to ask silly questions, one
must question established wisdom, one must play with ideas like being a child. And one
must not be afraid of making dumb mistakes.

By his adversaries, Abdus Salam was accused of all these things. He could be a child
in his wonder about beauty and esthetics, and he could make mistakes. Glancing back at
his numerous and wildly varied publications, I can see why some people found it difficult
to understand why he was given the most prestigious award of our trade, the Nobel Prize,
since even the one publication that is cited most, his work with John C. Ward, places the
leptons in a multiplet that no-one today would find acceptable, and even in his days, it
could easily be argued why that proposition would have to fail. Salam himself was also
surprised by the quotation that went with his Nobel Prize. “I think”, he once confided to
me, “that the Nobel Committee also rewarded me for my ideas about the two-component
neutrino. That was right on the spot, and I was the first”.

But that was not what he was rewarded for. I am sure that the Nobel Committee
would have mentioned it. Instead, the committee stated:

“for their contributions to the theory of the unified weak and electromagnetic
interaction between elementary particles, including, inter alia, the prediction
of the weak neutral current”.

Indeed, the prediction of the existence of a neutral component in the weak current hap-
pened to be correctly predicted even if you took the wrong multiplet. The real reason why
he earned the Nobel was that he had the grand view. As Sidney Coleman had noticed,
“Salam even gave the essence of a correct argument for his belief in the renormalizability
of the theory”. And, one cannot emphasize enough, that is what counts. After all, we now
know that what is called the “Standard Model” today, is just one apparently haphazard
choice, made by Nature, among many possibilities of principle. Salam’s multiplet could
have been right; his grand vision certainly was right.

This grand view evolved extensively. The principle that truly dominated the later
half of the 20th century was the principle of symmetry. “If you can identify Nature’s
complete symmetry group, you will know everything”, is what became a pivotal dogma.
But before this insight was truly appreciated, one first had to overcome a major obstacle:
divergences. Are the divergences in the integration expressions for quantized field theories
a fundamental shortcoming of the general idea, or can they be overcome, so that the
divergences can be viewed as nothing more than a temporary technical obstacle? Salam
had been strongly attracted to this question. But indeed he posed the question, rather
than airing dogmatic views on the subject, like so many of his contemporaries.

Did he see it right? Salam did notice that overlapping divergences can be disentangled,
that divergences in many theories can indeed be seen as a technical problem that does
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not disqualify quantized field theories as a whole, and that exact gauge symmetry is
essential for the theories to work. But then he played and made mistakes. Any attempt
to quantize gravity is also beset by divergences. Well, having put aside the divergence
problem as a technical one, perhaps it is a technical problem in gravity as well? When
I met him frequently, he was fiercely attempting to rearrange the Feynman diagrams of
quantum gravity. Since the interaction is non-polynomial (in most gauges, that is), one
can observe that any pair of vertices in gravity could be connected by an indefinite number
of propagators, the superpropagator (see Fig. 1

BA

Figure 1: The superpropagator. Two vertices, A and B , are connected by
an indefinite number of elementary propagators.

As many other attempts to tame quantum gravity, this one was bound to fail. Here
I never could agree with Salam, for very fundamental reasons. My problem with this is
the same difficulty I have with claims from both supergravity and string theory today.
Just imagine that indeed the integrals that one needs to perform would converge, or at
least become sufficiently regular, whenever the momentum variables kµ would tend to
infinity. This would mean that some kind of decoupling would take place at very high
momentum, or equivalently, at very tiny distance scales. This decoupling would indicate
that, at tiny distance scales, our system would linearize, decouple, simplify. We would be
able to describe a smooth and comprehensible world at distance scales smaller than, say,
the Planck length. Why not try to imagine such a world directly? The point is that this
is impossible. Newton’s constant would tend to infinity there, or, distances in space and
time, as what we are familiar with, cease to make sense there. This is characteristic for a
topological theory. Thus, gravity must become purely topological at small distances. As
long as we do not have such a topological theory, chances that we stumble upon one by
blindly manipulating superpropagators, supergravity diagrams or string world sheets, are
remote. Our searches should be well directed ones.

2. Grand Unification

Should the color group SU(3) be extended to SU(4) so as to “unify” the leptons with the
quarks? This is what Salam thought, and he further pursued the thought with Jogesh
Pati, ideas that were also expanded by Georgi, Glashow, Quinn and De Rujula. It so
turned out that the fermions most naturally fit in a 10 ⊕ 5 representation of SU(5), a
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group that combined color SU(3) with electro-weak SU(2)×U(1). It later turned out
that this SU(5) did not quite agree with observations: it would predict a too rapid proton
decay. Extending SU(5) to SO(10) is very straightforward. The 10 ⊕ 5 combine with
a SU(5) singlet into a 16. The singlet was the right-handed neutrino, which is now also
needed to give neutrinos a mass. The 16 is also a fermionic representation. The beauty
of the resulting scheme is that quarks, antiquarks, leptons and antileptons all end up in
one multiplet, which means that 3-quark systems can decay into leptons, so the proton
would become unstable. What I find particularly appealing about this construction is
that one ends up with a typically fermionic representation of SO(10), as if nature decided
that if something is a fermion in space-time, it better also be a fermion in internal space;
thus, with 3 generations, we apparently have three fermions, each forming 32 dimensional
(chiral) spinors in a 10+4 dimensional “space-time”.

Salam’s picture of the natural world was that it should be described by physical laws
that are aesthetically pleasing. Beauty was a very important criterion for him. He was
enchanted by supersymmetry, supergravity, superspace and superstring theory. These
theories had to be true just because they are beautiful. To my taste, he got himself
carried away sometimes a bit too easily. When a theory turns out to give unexpected
new insights, receiving support from different corners of experimental physics and/or
theoretical arguments, it usually also allows us a new view, showing us a new horizon
that had been hidden up to that moment. Such new horizons are always beautiful, so
indeed, correct theories are beautiful theories, in general. But turning this around very
often does not work. It would have been perceived as “beautiful” when matter was made
of just four elements, “water”, “air”, “earth” and “fire”. This was the beauty that was
searched for by the primitive scientists of the Middle Ages; yet the real truth would turn
out to be more beautiful in its own, more complicated ways. This is a lesson that one
should always keep in mind. There are beautiful worlds all around us, but one might have
to wade through a swamp to reach them.

3. Superstrings and Quantum Gravity

Injecting quantum mechanics into Einstein’s theory of General Relativity turned out to
be a vastly more stubborn problem than most of us had anticipated. We thought that
this was a problem very similar to the riddles we have been facing in the past. Injecting
quantum mechanics into Special Relativity had also been hard, and it too at first looked
like an impossible assignment. Various approaches using as much experimental input as
we could put our hands on, in combination with pure logical reasoning, were tried; and
we vindicated: the “Standard Model” was the most precise and complete answer that
was uncovered. So should we not do the same thing again, sharpen our theoretical and
experimental techniques, produce more precise formalisms, and yes, quantum gravity will
be there. Will it? History also shows us that procedures that have proven very successful
in the past, do not always guarantee success in the future. To crack this problem, we
might first have to step back. And if that does not help, perhaps step back further. By
itself, this is a risky thing to say. I receive letters every day from crackpots who give me
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the same advice: forget all that mathematical gibberish, read the Bible, go meditate, or
something of that sort. This is clearly not what I have in mind.

What I do have in mind is that we have to improve our mathematics, but we might
have to start at places where we thought everything was secure. My own hobbyhorse
is quantum mechanics. It is taken for granted by almost all theoreticians that, in order
to formulate some quantized version of gravity, one has to set up a description of the
basis elements of Hilbert Space. The first thing we teach to our students is that all
linear transformations in this Hilbert space are allowed, and all physical transformations
of interest can be reduced to such linear transformations in Hilbert space. There is no
particular basis to be preferred in favor of any other.

One might, however, suspect that quantum mechanics is not a completely immune
corner stone of all fundamental theories. It might be possible to explain why we experience
quantum mechanics in the world of the tiny things. Such an explanation might reveal that
there is something underneath quantum mechanics. The notion we call Hilbert space is
then just degraded into a powerful mathematical machine to handle the stochastic nature
of the solutions to some highly complex equations. Could we not try to identify candidates
for such underlying dynamical theories? I claim that we can indeed try to do this, and
that this may well result is a picture where one particular basis of Hilbert space actually
describes ontological reality, whereas others do not. This basis cannot be identified in
terms of the particles and fields we know today, because probably the complete set of all
particle types, including the ones relevant at the Planck scale only, and the ones describing
black holes, have to be included. This will be a gargantuan task, but we can first try
to find simplified models where exactly this picture applies. One finds that this idea is
not crazy, but we do have to abandon some of our standard procedures. Since we cannot
abandon all of our standard procedures at once, this is a difficult path to follow, but it is
worth thinking about it.

Compared to what I just said, superstring theory is just a more “conventional” scheme.
It is not my intention to criticize superstring theory, but one cannot help noting that some-
thing essential appears to be lacking: a precise description of a valid interpretation of this
theory. Looking at the face of things, one is inclined towards the following interpretation.

What string theory adds to the construct of quantum field theories is not only a
notion of one-dimensional - linelike - structures, but also higher dimensional objects,
(mem-)branes. There is a whole tower of mathematical features that can be observed
here, including general relativity in target space - i.e. gravity in space-time. It is sug-
gestive that this indeed is the structure that also plays a key role in General Relativity.
At the same time, however, there are numerous shortcomings if one wishes to elevate
this construct to the level of a fundamental ToE1. The structure is fundamentally quan-
tum mechanical, which means that it will never make definite predictions, but only yield
statistical expectations for its fundamental variables. What is conspicuously missing is
boundary conditions (in space as well as in time), and variables that evolve determin-
istically. If one believes that Nature (or “God”) is perfect, then this “partial’ theory is
suspect.

1“Theory of Everything”.
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The recent “landscape” theories have had a major impact on our “Grand View of
Physics”. The way the situation is presently formulated appears to lead to a very disap-
pointing state of affairs, since this scheme is not much more than a gesture of surrender:
we will never be able to derive the most conspicuous features of the Standard Model. Yet
the landscape idea is also difficult to refute. This really could be the conclusion that our
quest for understanding will be leading to. The power of superstring theory, together
with the impressive mathematical edifice that has been established by its investigators,
should not be underestimated. But as long as, in my view, this theory remains incom-
plete, requiring more solid foundations than what we have at present, there may still be
hope.
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