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Abstract

A procedure is described which leads to finite, gauge
invariant expressions for the S-matrix in gauge field models.
It is based on the replacement of the number N, denoting the
number of dimensions of Minkowsky space, by a continuous
parameter N. It is shown that the amplitudes obey the Werd
identities for gauge fields on the one hand, and the Cutkosky
rules and causality on the other hand. The method is found to
be applicable to diagrams with an arbitrary number of closed

loops.
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1. Introduction

Interest in gauge fields has revived recently, since the
Feynman rules appear to be of a renormalizable type ]’2’3).
A spontaneous symmetry-breaking can be introduced, arising
from a translational shift of certain field quantitiesh’sx
The Yang-Mills bosons then acquire a mass, and even this case
appears to be renormalizable, despite of the vector character

of the particless’T)

. A field theory of this type has been
proposed to describe weak interactions between leptonse’g’lo).

Still, the fact that divergencies cancel is not enough
for a theory to be renormalizable. It must also be shown that
renormalization can be carried out in such a way that the Ward
identities are not violated as a consequence of certain
boundary effects, or by some finite contribution of gauge-
non invariant regulators. We have seen that this is presicely
what happens in the P.C.A.C. case: it is impossible to
regularize a fermion triangle graph, expressing 7° decay, in
such a way that P.C.A.C. and electromagnetic gauge invariance
are both satisfied. In the case of Yang-Mills fields the Ward
identities are a necessary condition for unitarity. So it is
worthwhile to check whether such anomalies are absent in the
case of gauge fields.

Now, in ref. S)it was found how to regularize diagrams
with one closed loop in a gauge invariant way: a fifth
component was assigned to all Lorentz-indices inside the
closed loop, and thus we obtained massive regulators. The
propagator‘idéhﬁitié$U$ed to prove Ward identities, also hold

in a five-dimensional space, and so the Ward identities are



obeyed by these regularized amplitudes.

The purpose of this article is to show how to extend this
method of introducing more dimensions in Minkowsky space, for
diagrams with more closed loops. We write down, formally, the
contribution of a certain graph as a function of the number of
dimensions, N. Only for a limited number of values for N this
integral has a well-defined meaning, so at this stage
analytic continuation towards non-integer values of N is
impossible. Nevertheless, we can define an analytic function
of N, called "pseudo-integral, which represents the integral
of the graph as soon as it converges, for integer values of N.
For those integer values of N where the integral diverges, our
function may exhibit poles. This definition is made unique by
requiring also that a number of algebraic manipulations can be
carried out with these integrals. For instance, integration
and differentiation must commute, and shifts of the integration
variables may not alter the integral. This property is the key
with which we are able to prove the validity of the Ward
identities for these pseudo~integrals.

Finally, we want to take the limit N — 4. But, as soon
as the usual integral for N = 4 diverges, a pole occurs at
N = k4. The residue of this pole is a polynomial in terms of
the external momenta. Now we know that the amplitude is gauge-
invariant for all N, so also the residues of the pole are gauge-
invariant. So we must be able to cancel this pole by means of a

gauge-invariant counterterm in the Lagrangian:

AR = ﬁ:-gE Loy (1.1)



where C represents the residue of the pole.
Now the limit N - 4 exists and yields the desired expression.
In section 3 it is shown that the regularization scheme
we propose is equivalent with ordinary Pauli-Villars
regularization, after addition of further local counterterms
in the Lagrangian. Finally, an illustrative example is worked
out in the appendix: the regularization procedure is
demonstrated for the photon self-energy in quantum electro-

dynamics.

2. Algebraic properties of pseudo-integrals

Suppose we have an N-dimensional space VN with Minkowsky

metric: 8o = (1,.441, =1). Then we have

f de[(p-k)2+m2- ieJ—azin%NmN-aa FJ—(—i—)-‘;ij , (2.1)
Vﬁ
as long as the integral converges.
Now we define the "pseudo-integral" over p, for any non-integer
value of N, of the function [(p'-k)2+ me- 1e]™@ by the same
expression (2.1).
One may verify that the pseudo-integral has the following

properties:

(1) Differentiation with respect to m?, and pseudo-integration,

commute.

(ii) The pseudo-integral is independent of the origin of
integration. So pseudo-integration and differentiation

with respect to k also commute.



(iii) If for integer values of N the integral converges then

the pseudo-integral equals the integral, even if it is

+*
a linear combination of divergent parts.

(iv) If a is an integer, then the pseudo-integral may have

poles at those integer values of N for which the ordinary

integral diverges. Note that it is impossible to define

other pseudo-integrals with properties (i), (ii), (iii),

without such poles.

From eq. (2.1) we derive

f & Le-x%° i W Nezpom D(B+EO(a-p-dm)
r(3N) r(a)

[(p-%)2+ n°- 1c)®

By differentiation of eq. (2.1) with respect to kp we

derive
(p - k)
N v
d = Q,
JF P [(p-—k)2+ m?- ie]a
and
) (p-k), 8
fd = 42 dep

[(p- k)+m-i]

The left hand side of eq. (2.3) could also be calculated by
means of symmetric integration. So, we conclude that the

definition (2.1) for pseudo-integrals is only consistent if

(p - k)%

[(p- &)+ n= 1¢]°

(2.2)

(2.3a)

(2.3b)

*
Note that this is only true if the integrals converge strictly.

In all other cases the replacement N« 4 may lead to non-
vanishing contributions due to the pole in the I' - functions.



we have

;ﬂ o =N, (2.4)
/., Tuu
i

also for non-integer N.

Let us now consider the Feynman rules given in refs.[1,2,3,6],
and also the auxiliary vertices (4.3a,b,c) of ref. [3]. An
arbitrary diagram can always be written in terms of functions

like in eqs. (2.1), (2.2), (2.3) by using Feynman's auxiliary

variables:
1 1
_'_]-"'_ =(n"1)! f...fdx]-.-dx B(Zx-]) .
A, 0000ed n
L n o ) [a.X,+ oo + 8 x "
[ I n'n

(2.5)
Now we can give a well definedprescription how to calculate the
amplitude for non-integer N using the pseudo-integrals (extension
of these to two or more Minkowsky-variables is straightforward).
Whenever the sum of Lorentz-indices occurs we must insert eq.(2.4).
Now, because we may freely shift integration variables, the formal
proof of the Ward identities given in ref. [3] may be applied here,
so that these identities are satisfied for all N.
Next, let us consider the limit N — L. Because some of the integrals

diverge, the pseudo-integrals will exhibit poles for N = 4.

If all Feynman variables X, are non-zero, then the residues
of these poles must be contact terms, i.e. polynomials of a
certain degree in terms of the external momenta. (This can
easily be proven by differentiating with respect to these
momenta until the integrals converge, using properties (i)
and (ii). According to property (iii) the poles then

disappear). Now the only possible



gauge invariant contact term of this degree is of the form of
the Lagrangian from which we started. So we add to the
Lagrangian a counter term AL which cancels this pole. If we
proceed this way, order by order in perturbation theory, then
all poles vanish, and we have a counter term of the

following type:

AL = + + oaee (2.6)

where [ 1.2 are all gauge invariant, and have dimension 4
T

or less.

Now the limit N - 4 exists, and is gauge invariant (i.e.

satisfies all Ward identities) by construction.

5. Comparison with Pauli-Villars regularization

Now we show that the S-matrix for gauge gields defined this
way is unitary. Let us recall the proof of ref. [3]. The Ward
identities are satisfied, so only the cutting rule remains to
be proven. It is possible to show]]) that this cutting rule
can be extended to non-integer N, thus ensuring its validity
for N - 4, provided we have removed all poles by the
appropriate counter terms. Here we shall prove the cutting rule by
showing that our regularization method is in fact equivalent with
Pauli-Villars regularization]2) up to local counter terms in the
Lagrangian. Suppose this equivalency has been shown for all
diagrams with no more than n -1 closed loops, and suppose that

we have added the necessary local counter terms to the Pauli-

Villars regulirized



graphs. Now, consider an irreducible diagram with n closed loops.
Our aim is to show that our calculation with pseudo-integrals
for this graph equals the regularized expression, up to a contact
term, and terms that vanish for large regulator masses. The proof
is simple. Differentiate both expressions with respect to the
external momenta until the superficial divergence (i.e.
divergence obatained by power counting) of the obtained integrals
is less than zero. The contact term must then have disappeared.
Now we make use of the following lemma, which holds for
renormalized field theories:
lemms. If the superficial divergency of a graph is less than
zero, then at least one of the internal lines is not contained
in any divergent subgraph.

S0, if we take the momentum of that line as the last
integration variable, then this last integration converges.
The regulator of that line does not contribute on the one hand,
and the integral equals the pseudo~-integral on the other hand.
The contribution of the lower-order subgraphs to the integrand
is equal for both cases, by assumption. This completes our

proof by induction.

L. Fermions

We conclude that if the field variables and the Lagrangian
can be written down in a space with any number N of dimensions,
then the system can be renormalized, up to arbitrary order of the

coupling constant. The Ward identities for the renormalized



emplitudes are not in conflict with each other.
Fermions can also be included, becsuse what we need for
proving a Ward identity is only the commutation properties
of the 7 ~matrices:
7 T, =8 (k.1)
We now set up a consistent algebra for these y - matrices. This
algebra consists in defining the trace of an arbitrary sequence
of y -=matrices, in such a way that eq. (4.1) holds. For
instance: Tr 1 =4,
oy, v, S 80

= - +
T 7u707K7R h(BuDBKK 6uK5uh 6pl§uK))

ete. (4.2)

Eq. (4.2) can be continued by considering a spinor
representation of an N-dimensional Minkowsky space*). Together
with eq. (2.4) we now have a well-defined pseudo-integrand, and
we may continue as in sect. 3. Again, the Ward identities for
fermion pseudo-integrals can be derived using combinstoriecs,
and eq. (4.1).

One thing must be kept in mind: 75 being a pseudoscalar
in four dimensions, must be considered as a four-index tensor

if N » 4. This however would be untenable if for instance,

*)Note that an overall factor in eq. (4.2) is only fixed by the
unitarity requirement in 4 dimensions. Thus eq. (4.2) may be

altered by a factor f(N) with f(4) = 1.



: iay
gauge transformations of the kind V' =e > ¥ are contained

in the gauge group. This is why for instance Weinberg's model
of weak interactions is not renormalizable this way [8,10].
Difficulties of this type also underly the well~-known anomalies

of Adler's triangle graph [13,1L].

The author wishes to thank prof. M. Veltman, who proved

the validity of cutting rules in this formalism.
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Appendix

It is illustrative to show how our regularization method
works in the case of the vacuum polarization in quantum

electrodynaemics. The pseudo-integral is

1. (k,N) =

-ie? de Tr(n-1yp)y (m-iy(p+k))y
WO (2n)

(p%+ 12) ((p + %)%+ 1)

3

1
. 2 Tr(m=-iyp)y (m-iy(p+k))y
-ie dN dx " v
(2n)" J pgf [(p +2)% o+ x(1 = x)x%)° .

A.l

We may shift p + xk —» p and already insert eq. (2.3a). The

trace is calculated following egs. (4.2):

kKLN) =
HMD( )
1 2
-4 iezk/”dﬁpu/"dx T x(1 -x)[2¥pkb- kgauu] B zpppu+ pespu
(2n S

[p2 + m2 + x(1 -x)kE}2

(A.2)
According to eq. (2.3b) we replace
pp. — 1 p2 o) . (A.3)
[Vikiv] N uo
Now eq. (2.2) is applied, and the result is
i
2
. -8 iN
Loy G0 = =502 =20 [ax <(1 - x)
K (2x)
o
1
SN-2
2 2\?
(ﬁ + x(1 =x)k ) [kaﬁuuu k“ku]. (A.L)

Note that this expression satisfies the Ward identity

k 7 (kN) =0. (A.5)
TR
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Now for N - 4 we have

-2

r (2-%1‘1) -3 ¥o% (A.6)

S0, indeed, there is a pole. Its residue is

16e ﬂ
(21’() fdx x{(1 =x) [k S o k k 1. (A.T)

This is a gauge invariant contact term. So, let us add the

following second order counter term to the Lagrangian,

2 2 ]
5= (rF ) 2 re-dn [ x(-x) ax, (8.8)

po po
(2n) s

which gives rise to another contribution to the self-energy:

2 2 25
Py Huu(k,N) =(—;—)—r P(E-—N)fdx x{(1 =x)[K - k k 1. (A.9)

Inserting eq. (A.6) and

1y
lim ﬁJ—E (z2N 2 _ 1)

= £ log z, (A.10)
Nk

we find the regularized self-energy

T8(k) = 1im I (k,N) + AT (k,N))
Mo Nl

28 s e

(A.11)
The term log = m2 may be eliminated by another finite, gauge-

invariant counter term in the Lagrangian.
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