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The influence of a uniform driving force on tracer diffusion is investigated for a 
one-dimensional lattice gas where particles jump stochastically to unoccupied 
neighboring sites. A new, simple calculation is presented for the diffusion coef- 
ficient of a tracer particle with respect to its average drift, obtained recently by 
rigorous methods by De Masi and Ferrari. A theoretical expression describing 
the tracer particle mean square displacement approximately for all times is 
derived and found to be in excellent agreement with the results of Monte Carlo 
simulations. 
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1. I N T R O D U C T I O N  

In the present paper we consider tracer diffusion in a one-dimensional lat- 
tice gas model in the presence of a driving force. We develop a theory for 
the mean square displacement of a tracer particle as a function of time by 
the methods of Ref. 1, which we will refer to as I, and compare its predic- 
tions to the results of Monte Carlo simulations. 

The model is defined in the following way: A one-dimensional periodic 
chain of period N is occupied with Np particles, hence the concentration c 
equals Np/N. Double occupancy of sites is forbidden. The particles may 
only jump to unoccupied neighboring sites, with jump rates F+ and F in 
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and against the direction of the driving force, respectively. The jumps are 
assumed to occur instantaneously and the influence of the force is accoun- 
ted for entirely by the difference between F+ and F _ .  Note that this model 
satisfies the so-called single filing constraint(2): particles cannot pass each 
other. 

If configurations are characterized by specifying the occupied sites 
(hence ignoring the identity of the particles) the stationary state simply 
gives equal weight to all allowed configurations. The reason is that there 
are always equally many configurations from which a given configuration 
can be gained as to which it can be lost, by a jump in a given direction. ~ 

In the absence of a driving force the mean square displacement of a 
tagged particle in this model increases proportionally to the square root of 
time (1"4-8) in the limit N--, ~ ,  hence it seems of interest (9'1~ to investigate 
how the mean square of the displacement as measured relative to the 
average displacement, depends on time when a driving force is present. It 
was in fact proven recently 4 that for long times the tagged particle behaves 
diffusively and the diffusion constant was computed exactly./9/In Section 2 
we propose a theory for the displacement at all times and in Section 3 we 
present the results of Monte Carlo simulations and compare these to our 
theory. In Section 4 we discuss our results and make some concluding 
remarks. 

2. THEORY 

The quantities to be considered here are the mean square displacement 
zl(t) of a tagged particle with respect to its average drift and its velocity 
autocorrelation function C(t), defined, respectively, as 

J (t)  = ( E x ( t )  - x ( 0 ) ]  2 > - ( x ( t )  - x ( O ) ) 2  ( 1 )  

and 
c ( t )  = ( v ( t )  v ( o ) )  - ( v ( t ) ) ( v ( o ) >  (2) 

Here x(t) and v(t) denote the position and velocity of the tagged particle at 
time t and the brackets denote an average both over the stationary initial 
distribution and over all realizations of the stochastic hopping process with 
their proper weights. The quantities A(t) and C(t) are related to each other 
through the equation (1) 

d2A-~(zt) - 2C(t) (3) 
clt 

4 C. Kipnis, quoted in Ref. 9. 
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Denoting the Laplace transform of C(t) as C(s) we obtain the frequency- 
dependent tracer diffusion coefficient Dtr(C0) as 

D~(~o) = Re ~(i~o) (4) 

Its zero frequency limit Dtr is given equivalently by the Einstein relation 

Dtr= lim A(t)/2t (5) 

In I an approximate but accurate method was developed for 
calculating the velocity autocorrelation function for the case F+ = F . It 
can be applied without any problems to the case where the two jump rates 
are different. 

For a given realization of the hopping process the tracer particles will 
make jumps uj with uj~ {1, - 1 }  (so we set the lattice spacing equal to 
unity) at time instants tj ( j =  0, 1, 2,...), where we require 0 ~< to < tl < "" '. 
Then the (generalized velocity of the tracer particle is given as 

v(t) = ~ uj 6 ( t -  tj) (6) 
j=O 

Inserting this expression into (2) one immediately sees that in order to 
obtain a nonzero contribution to C(t) one must have to = 0, so the first 
jump of the tagged particle has to occur at t = 0. As in I, we may call the 
vacancy with which the tagged particle exchanges at t = 0 the special 
vacancy and the cluster of vacancies to which it belongs the special van- 
cancy cluster. As in I the dynamics of the special vacancy is defined such, 
that it may exchange positions with a particle only if no other vacancies are 
present in the special vacancy cluster and then it does so with the given 
jump rates F+ or F .  In this way the dynamics of the system disregarding 
the jumps of the special vacancy, would be exactly the same as though the 
special vacancy were not there at all. Also, if just after the initial jump one 
takes out the site with the special vacancy, the remaining configuration is 
stochastically distributed according to the stationary state for a system 
with Np particles and N -  1 sites. Hence the average velocity of the tagged 
particle at time t due to exchanges with nonspecial vacancies, given a jump 
occurred at t =  0, in the thermodynamic limit is the same as in the 
stationary state; it is the constant drift velocity 

l)dr= <V(0)> ~--- ( / ) ( t ) )  = ( 1 - - C ) ( r +  - - / ~  ) (7) 

It then follows that C(t) is entirely due to exchanges between the tagged 
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particle and the special vacancy. The initial exchange at t = 0 gives rise to a 
contribution(~) 

C(~ = (r+ + r ) 6(0 (8) 

or, after changing to C(s) in the Laplace domain, 

~(~ = �89 + F ) (9) 

It is interesting to consider the case of an infinite driving force. There 
the initial jump of the tagged particle is in the field direction and after this 
initial jump no further exchanges between tagged particle and special 
vacancy are possible. Hence in this case C(t) is identically zero for t >  0 
and the frequency dependent coefficient of tracer diffusion, given by the 
real part of ~(ico), is just a constant. This implies that mean field theory, (11) 
which approximates Dtr by ~(o), is correct in this limit and that the 
Bardeen-Herring correlation factor (12) which can be defined as the ratio of 
the actual tracer diffusion coefficient and its mean field value, becomes 
equal to unity. 

For a general driving force the zero-frequency tracer diffusion coef- 
ficient can still be obtained exactly. One only needs to observe that the 
special vacancy, as seen from the tagged particle, always drifts off in the 
direction opposite to the field. Hence, if the initial jump of the tagged par- 
ticle is in the field direction, it is always followed by an even number 
(which may be 0) of further exchanges between special vacancy and tagged 
particle, before finally the special vacancy drifts off. The contributions of 
these exchanges to the integral of the velocity autocorrelation function 
alternatingly are - ( 1  - c ) F +  and ( 1 -  c)F+, hence they always add up to 
zero. On the other hand, if the initial jump was against the field direction it 
is always followed by an odd number of subsequent exchanges, the first one 
of which contributes - ( 1 -  c )F_ ,  while the sum of the other ones adds up 
to zero again. Adding this additional contribution to the initial con- 
tribution given in (9) one finds 

Dtr = lim C(s) = �89 - c)(F+ - F_ ) (10) 
s ~ 0  

A rigorous derivation of this result has been given by De Masi and 
Ferrari.(9) 

The full time behavior of C(t) for arbitrary driving field is not so easy 
to calculate exactly. However, as was done in I, one can approximate the 
special vacancy dynamics by making the following three assumptions about 
the behavior of the special vacancy cluster: 
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(1) Just after a jump of the special vacancy the probability that the 
special vacancy cluster contains m vacancies, including the special one 
equals c(1 - c )  m-1 (m-- 1, 2,...). 

(2) A special vacancy cluster of size m has a constant rate 
(1 - c ) ( F +  + F_) for growth to size rn + 1. 

(3) A special vacancy cluster of size m has a constant rate 
(F+ + F ) for shrinking to size m -  t. 

As discussed in I the assumptions (1) and (2) are based on the stationary 
state values and they ignore memory effects. 

Under the assumptions given above the special vacancy, as seen from 
the tagged particle, describes a biased continuous time random walk, with 
waiting time distributions (1 - p) 0(t) and p~(t), where 
p = F+/(F+ + F_ ), for jumps in and against the field direction, respec- 
tively. The Laplace transform t~(s) of O(t) can be taken from (I.2.10) as 

cv (11) 
t~(s) = [1 - 2 ( s ) ] ( 2  - c)(v + s) - (1 - c)v  

with, however, v = (F+ + F ) ( 2 - c )  and X(s) given again by (I.2.12) in 
the form 

X(s) 2 2(s+v-)(2-c) c2+(2-c)212s+v 2 ,/2 

Now if we define P(rnJn, t) as the probability density for the special 
vacancy, having arrived at site n at time t = 0, to jump so site m at the 
instant t, 5 its Laplace transform can be found, e.g., by the calculation given 
in the Appendix of I, to be 

I- 21 _- p) 7 " 
P(mln, s)= LI + [-1 -410(1 --p) @2(s)] 1/2j 

2p~( s )  ] n -  m 

= 1 + [1 --4p(1 - -p )  ~2(S)]1/2 

[1 - 4p(1 - p )  6 2 ( s ) ] ' / = '  

m>~n (13a) 

1 

[1 - 4p(1 - p )  ~ 2 ( s ) ] '  

m<~n (13b) 

Now it is simple to calculate the Laplace transform of the velocity 

5 This means  that after a time t the special vacancy has jumped over a net number  of In-m[ 
particles, either in the field direction (n ~> m) or in the opposite direction (n ~<m). 
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autocorrelation function. Under the approximations made C(s) can be 
written as 

C(s) = ~(o)+ (1 - c ) F +  {P(0] 1, s) p~(s)-  P(0D, s)(1 - p ) ~ ( s ) }  

+ ( 1 - c ) F  {P(Ol-l ,s)(1-p)~(s)-P(OlO, s)p~O(s)} (14) 

For understanding this expression: e.g., the term (1 - c )  F+ P(0] 1, s) p~(s) 
describes the Laplace transform of the probability density that the special 
vacancy, after making an initial jump against the field direction [with 
probability density ( 1 - c ) F + ]  performs a random walk bringing it one 
position to the right [-with probability density P(011, t)], convoluted with 
the probability density for a final jump to the left [with probability density 
pO(t)] occuring at time t. This term yields a positive contribution to the 
velocity autocorrelation function, since the initial and the final jump are in 
the same direction. The other terms can be understood in similar ways. 
Inserting Eqs. (11-13) into (14) one obtains the final result 

1 1 -4p (1 -p )~ ( s )  (15) ~(s)=~(1-c)(V+ + r ) [ 1 - 4 p ( 1 -  p) ~2(s) ] 1/2 

In the asymptotic region c--* 1 the inverse Laplace transform of this 
equation can be obtained explicitly as 

C(t) = (1 - c)(F+ + F_)2[6(r) + ~ -  p) e 

x { / 1 ( 2 - c ~ -  p ) ) -  1 o ( 2 " c ~ ) } ]  (16) 

where I~ denotes a Bessel function of imaginary argument and 
~= (F+ + F ) t  is a dimensionless time unit. In the general case C(t) has 
to be obtained by a numerical inverse Laplace transform. 

3. N U M E R I C A L  S I M U L A T I O N S  A N D  R E S U L T S  

The hopping process with different jump rates F+ and F_ was 
simulated by a Monte Carlo procedure that has been described comprehen- 
sively in Refs. 11 and 14 treating tracer diffusion in an fcc lattice and in a 
model consisting of two coupled lines. Here we discuss some characteristic 
features and modifications for the model discussed in this paper. 

For the size of the lattice we chose N =  200 000, which means that 
over the time ranges considered finite size effects on averages are com- 
pletely unimportant, and we used periodic boundary conditions. Initial 
configurations were generated by occupying the sites randomly with 
average concentration c. The values of c we investigated are c = 0.2, 0.5, 
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and 0.8. In order to achieve better statistics for c > 0 . 5  the following 
modification was made: in each Monte  Carlo step a vacancy is selected at 
random (instead of a particle, as was done in previous versions) and with 
probability p, respectively ( 1 -  p), it exchanges positions with the content 
of the neighboring site to its left, respectively, its right. In this way two 
vacancies may be exchanged, but this does not influence the dynamics of 
the particles. The initial and actual positions of both particles and vacan- 
cies are stored, hence one easily obtains quantities like A(t). For  c < 0 . 5  
particles instead of vacancies are chosen at random, but now an at tempted 
jump is actually performed only if the exchange is to take place with a 
vacancy. It is clear that the ratio between the efficiency rates of the two 
strategies (the fractions of at tempted jumps that exchange a particle and a 
vacancy) equals ( 1 - c ) / c  so that indeed for c > 0 . 5  the first strategy is 
preferable and for c < 0.5 the second one. Further, in the first procedure the 
discrete time z is measured in Monte  Carlo steps per vacancy (Mcs/v), i.e., 
r = N~t/{(1 - c ) N }  were Nst is the number  of Monte Carlo steps, and in the 
second procedure it is measured in Monte  Carlo steps per particle, i.e., 

= Ns]{cN}.  In both cases the definition of r coincides with the one given 
in the preceding section, since the average number  of jumps exchanging a 
particle and a vacancy per unit of time equals c(1 - c ) N  in either case. 

To compute the quantity A(t) we averaged in each case over all par- 
ticles and over a few different runs. In this way for all values of c, t, and c4 
defined as the jump rate ratio F+/F , that we investigated, the relative 
statistical spread in A(t) was found to be less than 0.5 %. 

In Fig. 1 we display the results of our simulations together with our 

~ "  c =0.2 

0 25 50 75 100 
performed jumps 

Fig. 1. The dispersion in the mean square displacement of a tracer particle with respect to its 
average drift is plotted for two different values of the ratio ct = F+/F and the concentration 
c, as a function of (1 -c)(F+ + F )t. The solid lines give the theoretical values and the dots 
our Monte Carlo results. 
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theoretical predictions. The latter were obtained by applying an inverse 
Laplace transform by means of the fast routine of Honig and Hirdes (13) to 
the quantity 2C(s)/s 2, with C(s) given by (15). The dispersion in the mean 
square displacement is plotted as a function of (1 -c )T ,  that is, the time 
unit is chosen to be the average jumping time of a particle. One sees that 
the agreement between simulation results and theory is quite satisfactory. 

4. D I S C U S S I O N  

As discussed in Section 2 and Ref. 9 the dispersion of the tracer par- 
ticle mean square displacement in the presence of a driving force becomes a 
linear function of time for large times. Plotting the dispersion as a function 
of (1 - c ) r  one finds the asymptotic slope as a function of the jump rate 
ratio c~ = F + / F _  to be given by (c~- 1 )/(c~ + 1) independently of c, as can 
be clearly seen in Fig. 1. Notice that with increasing a the curves for dif- 
ferent c come to lay closer together, in accordance with the fact that in the 
limit c~ ~ o0 A(t)  becomes linear in time for all times; this is an immediate 
consequence of C(s) becoming independent of s in this limit. 

From (15) one readily finds that for c~ r 1 the velocity autocorrelation 
function decays exponentially for long times, in contrast to the case e = 1 
where the velocity autocorrelation function exhibits a long time tail 
behavior proportional to t -3/2. This latter behavior can be explained in a 
more general theoretical framework alternatively on the basis of mode 
coupling theory (15) or by a simple argument given by Alexander and 
Pincus. (8) One would like to understand why these theories would not 
predict the same type of behavior in the presence of a driving force. The 
explanation turns out to be rather simple. Mode coupling theory explains 
the long time tail on the basis of a coupling between a bulk diffusion mode 
and a tracer diffusion mode. In the presence of a driving force these modes 
have different drift velocities, namely, ( 1 - c ) ( F + -  F )  for the tracer 
mode and ( 1 -  2c)(F+ - F ) for the bulk mode ~16) (This, incidentally, is 
the drift velocity of the special vacancy in an inertial reference frame). 
Hence the two modes drift apart and as a result the correlation between 
them decays exponentially. Similarly, the argument of Alexander and Pin- 
cus is based on the observation that locally the gradient of the dis- 
placement of tracer particles from their average positions is to leading 
order proportional to' the fluctuation in the bulk density. In the presence of 
a driving force one has to consider this relation in a reference frame mov- 
ing with the tracer particle drift velocity. In such a reference frame the bulk 
mode drifts with velocity - c ( F +  - F ), which leads again to an exponen- 
tial decay of the local fluctuation of the bulk density (which in our case 
may be interpreted as the local special vacancy density). 
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Finally we want to remark that the effects reported here may be obser- 
vable in real experiments with the aid of magnetic tagging techniques. (17 19) 
With this method for instance ionic mobilities can be determined over a 
wide range of values. 
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