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H-Theorem for a Linear Kinetic Theory 
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A strong H-theorem is proved for the approximate linear kinetic theory of 
Blawzdziewicz and Cichocki, obtained by truncating a transformed hierarchy of 
evolution equations. For an ith truncation we define an entropy functional that 
is strictly increasing in time, unless the ith reduced distribution function 
depends on position coordinates only. It also follows that the only stationary 
solution of the linear kinetic theory is the equilibrium solution. In addition, we 
show that the usual symmetry properties of equilibrium time correlation 
functions are preserved by the approximate kinetic theory under consideration. 
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1. I N T R O D U C T I O N  

In kinetic theory, the possibility of proving H-theorems for the kinetic 
equations studied is always considered a very desirable property. If such a 
theorem holds, this implies the approach of the system, as described by the 
kinetic equations under consideration, toward equilibrium, even though the 
H-theorem alone is not sufficient to prove that indeed the equilibrium state 
is reached in the long-time limit. In addition, an H-theorem provides us 
with an H-function, the negative of which can be interpreted as the entropy 
of the system, even if it is far removed from equilibrium. 

For kinetic equations that can be derived by the principle of 
maximization of entropy an H-theorem can be proved. Examples of such 
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equations include the revised Enskog equation (~) and its generalization to 
a square-well fluid without a) or with (3/ a differentiable tail. 

The underlying idea is the following(4): Let [f~] be a set of functionals 
of the phase space variables F =  [N, x 1, x2 ..... XN], where N is the number 
of particles and x i = r  i,vi is the phase of particle i, such that [f~] 
constitutes the set of independent variables for the kinetic equations to be 
derived. For example: for the revised Enskog equation [ f~] ]  is the 
one-particle distribution function 

El(x; t) = 6(x - xi) 
i 1 p(t) 

(1.1) 

where 

<A(F)>p(,) =f dF A(F) p(f';  t) (1.2) 

denotes the average of a quantity A(F) over the time-dependent phase-space 
density p(F; t) and 

N=0 

In the case of the revised Enskog equation, the subscript ~ represents the 
continuous set of values taken by the phase space variable x. Now for a 
given set [f~J one may construct the phase space density Pmax(/', [fa]) 
that maximizes the entropy 

S[p] = --kB f dFp(F) ln[N! h3Np(/')] (1.4) 

with k B and h Boltzmann's and Planck's constants, respectively, under the 
constraints that Pmax reproduces the given set of values of [f~] correctly. 
Accordingly one assigns to the set [f~] the entropy 

S i f t ]  = S[Pmax( / ' ,  [ f ~ ] ) ]  (1.5) 

Obviously 

Sift] >~ S[p] (1.6) 

if p satisfies the constraints on [f~]. Now, if initially p(F, 0)=  Pmax(/' ,  0), 
the kinetic equations derived by the principle of maximization of entropy 
are exact at the initial time t = 0 .  As a consequence, the exact time 
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evolution of the ensemble and the kinetic equations for [ f~]  yield the same 
set of values for [ f~]  at t = 0  § an infinitesimal time beyond t = 0 .  As a 
result of Liouville's theorem, the entropy according to (1.1) is invariant in 
time, hence, as a consequence of (1.6), 

sift ,  o + ]/> s [ L ,  o2. (1.7) 

As this holds for any choice of [f~],  and as the kinetic equations, determining 
the time evolution of [ f~]  are determined by [f~] alone, 5 it follows 
immediately that the entropy (1.5) is a nondecreasing function of time. 
Proving that it actually is an increasing function is a technical problem that 
has to be considered from case to case and has been solved only for some 
special choices of [f~].  For the kinetic equations mentioned before, proofs 
of such strong H-theorems were given in refs. 2-6. 

Btawzdziewicz and Cichocki ~7,s~ obtained a sequence of linearized 
kinetic theories (LKT)  for a hard-sphere (HS) system close to equilibrium 
by transforming the BBGKY hierarchy equations into a hierarchy of 
equations for a set of certain distributions possessing strong cluster 
properties. The full set of distributions is equivalent to the set of ordinary 
reduced distribution functions; the two sets can be mapped upon each 
other in a unique way. The collisional operators occurring in the new 
hierarchy equations are renormalized by static correlation functions. As a 
consequence of this, truncations of the new hierarchies are better suited to 
describe systems at high densities than truncations of the usual BBGKY 
hierarchy. Specifically, setting all j-particle reduced distribution functions 
with j >  i equal to zero yields the ith-order L K T  of Btawzdziewicz and 
Cichocki. In particular, the first-order L K T  is equivalent to the linearized 
revised Enskog equation (LREE). (7'8/ 

In terms of the reduced distribution functions an entropy can be 
defined, which coincides with (1.4) if the latter is expanded through 
quadratic order in deviations of p from equilibrium. This entropy can be 
shown to be a nonpositive functional of the reduced distribution functions. 
The i th-order L K T  gives rise to a truncated entropy to which only the 
reduced distribution functions of orders ~<i contribute. For this truncated 
entropy an H-theorem follows in a very similar way as in the case of the 
kinetic equations derived by maximization of entropy: 

Suppose the truncation is exact at the initial time t = 0, so that the full 
entropy coincides with the truncated entropy. The exact time evolution 
leaves the full entropy unchanged, but between t - - 0  and t = 0 § it generates 

5 This is of course an approximation, which is not satisfied if one follows the exact time 
evolution of the ensemble. 
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an infinitesimal nonpositive contribution to the entropy, resulting from the 
infinitesimally nonzero (i + 1)th reduced distribution function at t = 0 +. In 
the truncated entropy considered in the ith-order LK T the latter contribu- 
tion is lacking, but the contributions from the reduced distribution 
functions of orders 1 through i are the same as under the exact evolution 
equations. Hence the truncated entropy at t = 0 + is ~> the exact entropy at 
this time, which in turn is the same as the exact and the truncated entropy 
at t = 0. So indeed it follows that in LKT entropy is a nondecreasing function 
of time. 

In fact it can be proven that the truncated entropy is always strictly 
increasing, unless the ith-order reduced distribution function does not 
depend on velocities. Hence, it follows that the only stationary solution of 
LKT is the equilibrium solution, where all reduced distribution functions 
vanish. 

This paper is organized in the following way: In Sections 2-4 we 
briefly recall the LKT of Btawzdziewicz and Cichocki. In Section 5 we 
derive the H-theorem. In Section 6 we demonstrate some useful symmetry 
properties of LKT, when applied to the calculation of equilibrium time 
correlation functions. In Section 7 we discuss our results. Some technical 
details have been deferred to appendices. 

2. B A S I C  D E F I N I T I O N S  

The time evolution of a system of identical hard spheres of diameter 
a can be conveniently described in terms of the binary-collision operators 
T+_ and 7"+, defined by the equations (9''~ 

T+ (03 = ~ ( r i j -  ~ + ) tv~j" ~1 0( -Y- v,j. ~0) [&0") - 1 ] (2.1) 

and 

T+(O')=a(r~-a +) [v~'f~l [O(Tvo.'~g)[~(ij)-O(+vo'ro)] (2.2) 

where 0 is the unit step function, vi j=vi-v j ,  ~o.=ri/rij, and the operator 
/~(zj) transforms the velocities according to the collision laws 

[~(ij)v i = v; = v , -  (vo" f0)f0 

/~(/j)vj = vj = vj + (v,j" f~)f~ (2.3) 

&0)vk = vk, k # i, j 

To uniquely define the result of the action of the T-operators upon 
functions which are discontinuous at the collision surface, we have intro- 
duced the Dirac a-function taken at ro.=a +, where a + =~r+ [el, ]el--+0. 
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We find this more convenient than the insertion of infinitesimal free- 
streaming operators, which has been done in many papers. ~ 11) The 
T- and T-operators are related to each other by the conjugation relation 

f dvi f dvjf(F)T+(~)g(F)= f dv, f dvj g(F)Tm_(O" ) f(F) (2.4) 

where f and g are arbitrary functions. The T-operators with the subscript 
plus and minus are used to describe the evolution forward and backward 
in time, respectively. 

In the thermodynamic limit, one can completely describe nonequilibrium 
states of a macroscopic system by the set of reduced distribution functions 
FI, l/> 1. The reduced distribution functions are defined by the formulas 

F~([ i ] ;  t ) =  l i m ( f ( [ l ] ;  F ) ) p u  ) (2.5) 
oo 

where lim~ denotes the thermodynamic limit, [1] = (x 1,,.., xt) and 

fiE/];  t )=  ~ 6 ( [ / ] -  [ / (F)])  (2.6) 
u(r ) ]  

In (2.6) the summation runs over all sequences [ i(F)]  of I different particle 
phases included in F and 

~(E/J - [ r ] )  = ~(x~ - X'm)... ~ ( x , -  x;)  (2.7) 

The time evolution of the reduced distribution functions is governed 
by the BBGKY hierarchy. For a hard-sphere system, for positive times, the 
hierarchy has the form (1~ 

{ ' } G + s  ~ T_(U) F,(El];t) 
i > j = l  

l 

= ~ fdxt+~ T_(i,l+l)F,+l([l+l];t), 
i = 1  

/ = 1 , 2  .... (2.8) 

where 

l 

s = Y s 
i = 1  

(2.9) 

and 

s = vi" 8r~-i (2.10) 

822/66/1-2-39 
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is the one-particle Liouville operator. The BBGKY hierarchy (2.8), with 
binary collisions described in terms of the operators T , should be used 
only for times t > 0 ;  for negative times, t<0 ,  one should replace the 
operators 5P with the respective operators - T+, acting on the same pairs 
of variables. 

Consider now a system displaced slightly from equilibrium. The only 
way to take this information into account on the level of the BBGKY 
hierarchy equations is via the initial conditions for Fk; the structure of the 
hierarchy remains unchanged. However, one can expect that near equilibrium 
closure of the hierarchy ought to be possible, yielding kinetic equations 
that provide a good approximate description of the time evolution of the 
system. The Enskog equation is a well-known example of such a kinetic 
equation in the case of hard spheres. 

A general formalism of an LKT leading to a description of the evolution 
of an HS system in terms of binary collisions renormalized by equilibrium 
correlations has been proposed in refs. I and II. (7's) Such a renormalization 
of collisions is a generalization of the idea that goes into the Enskog equation. 
It has been shown that the renormalization can be achieved by an 
appropriate choice of a set of functions representing the state of a system 
under consideration. The new set of functions is related to the reduced 
distribution functions by a linear transformation. We now recall the main 
results of these papers. We follow here the elegant version of the formalism 
introduced in ref. II. 

We start our analysis, in the following section, by considering the 
structure of the reduced distribution functions. 

3. STRUCTURE OF REDUCED DISTRIBUTION FUNCTIONS 
IN LKT 

LKT describes the evolution of a nonequilibrium system in such states 
that the reduced distribution functions can be derived, in the thermo- 
dynamic limit, from a probability density p of the following form: 

p(F; t )=  pen(F)[1 + ~//(F; t ) -  ~0(F; t ) )] ,  t>~0 (3.1) 

with 
N N N 

0 ( r ;  t) = h , (x , ;  t) + h2(,,,, xj; t) + 
i = 1  i > j = l  i > j > k = l  

h 3 ( x i ,  x j ,  X k ;  t )  -'1-- " -  

where peq(F) is the grand-canonical equilibrium distribution function. It is 
assumed that the functions ht([l]), where l>~ 1, are symmetric functions of 

(3.2) 
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particle phases that vanish sufficiently fast when the distance between any 
pair of particles 1 ..... l tends to infinity. This last property is called the 
group, or cluster property of ht, and decomposition (3.2) the linear cluster 
decomposition. The group property uniquely defines the decomposition 
(3.2) of a function 0- 

In many important problems concerning the behavior of a system 
close to equilibrium one finds the density p in the form (3.1) (3.2) at t = 0. 
Examples of such problems include calculation of equilibrium time-correla- 
tion functions, such as those appearing in the Green-Kubo formulas for 
transport coefficients. One can demonstrate, by analyzing the binary-collision 
expansion of the evolution operator, that for systems with a short-range 
interparticle potential this form of the density p can be extended for t > 0. 
A formal proof of this fact has been described in ref. I. A proof, formulated 
in a different language than we use here, for a hard-sphere system, can be 
found in Chapter 5 of ref. 11. 

To describe in a compact way the consequences of assumption (3.1)- 
(3.2), it is convenient to introduce a general notation. We introduce a 
linear space of column vectors 0 = {0i; i =  1, 2,...} with infinite number of 
components, where the ith component 0 i ( [ i ] )  is a symmetric function of 
i particle phases. The scalar product of two vectors 0 and r is defined by 
the equations 

(0, r  ~ (0,, r (3.3) 
i = 1  

and 

~ 

(0~, ~ , ) = ~ f  J d[,] 0"([13) ~,([i]) (3.4) 

where d [ i ]  = dxl ... dxi and the asterisk denotes complex conjugation. 
Next, we introduce linear operators which transform the linear space 

into itself. Such an operator /i acting on a vector 0 gives as result the 
vector .,i 0 with components 

(A0)i = ~ -du0j, i =  1, 2 .... (3.5) 
j = l  

In our considerations the matrix elements ~i~j are linear integral operators, 
defined by the following expression: 

(A,jOj)([i]) - 1 - j !  f d[j'] Aiy([i] ] [j']) 0y([J']) 

Here A~j([i] I [ j ' ] )  is an integral kernel. 

(3.6) 
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The identity operator i, acting in the linear space defined above, has 
the following structure: 

[~=6o.]jj (3.7) 

where 6,j is Kronecker's delta and 

Ijj([j] I [ j ' ] ) =  ~2 6([j] - [j ']) (3.8) 
P[i'] 

Since the components of vectors are symmetric functions of the particle 
phases, we have symmetrized the kernels (3.8) by inserting a summation 
over all permutations P[ j ' ]  of the set [j']. For example, 

122([211 [ -2 ' ] )  = b(Xl  - X'l) ~(x2  - -  x~) + r - x~)  ~(x2  - -  x ] )  (3.9) 

The structure of the reduced distribution functions associated with the 
probability density (3.1) can now be conveniently analyzed. We define two 
vectors h=  {h~;k= 1, 2,...} and 6F= {6Fk;k= 1, 2,...}, where hk are the 
group decomposition elements of p and 6Fk = Fk -- F2 q denotes the deviation 
of the k-particle reduced distribution from the equilibrium value F2 q. We 
get then the relation 

6F=  Qh (3.10) 

with the operator 0 defined by the following expression for the integral 
kernels: 

Q,i( [ l ]  I [ i ' ] ) = l i m < a f ( [ l ] ;  F) 6f ( [ i ' ] ;  F ) ) ,  
cO 

l , i = l , 2  .... (3.11) 

where we use the notation ( - . - )  - (-.-)peq and 

6f([l]; F ) =  f(El];  F ) -  <f( [ l ] ;  F)> (3.12) 

and f ( [ l ] ;  F) is defined by Eq. (2.6). A brief derivation of relation (3.10) 
is given in Appendix A. 

We recall now an important decomposition of the operator Q. The 
decomposition is crucial for our further considerations. Together with 
relation (3.10) it naturally leads to a new representation of the state of the 
system, which will be discussed in detail in the following section. 

It has been shown in ref. II that the operator 0 can be decomposed 
as follows: 

0 = 0 (~) ~)0 (~) (B)0 (3.13) 
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where the operators at the right-hand side of Eq. (3.13) obey the conditions 

Q(~) /r for j > i  (3.14) i j  " =  

O_If = L (3.15) 
and 

(~10!~)  = 6gj (~)(}(~) (3.16) 
tj  ~ i i  

The decomposition (3.13), together with supplementary conditions (3.14)- 
(3.16), uniquely defines the operators Q~), ~)Q~), and ~)Q, which can be 
constructed by an iterative procedure. The details of the procedure along 
with explicit expressions for the kernels of the (~-operators for small values 
of the indices i and j are given in II and will not be repeated here. 

It can be seen from definition (3.11) that an integral kernel 
Qk i ( [k ] l [ i ' ] )  describes equilibrium correlations between two sets of 
particles [k]  and [i '].  We recall the physical interpretation of decomposi- 
tion (3.13) (3.16) of these correlations. This interpretation is supported by 
the virial-expansion analysis given in ref. I. 

The kernel Qki([k]l [-i']) can be split into two parts: The first part 
describes all situations when there is an intermediate set of particles [p"] 
with p ~< min(k, i) if k r i and with p < i if k = i, such that (i) the particles 
[k]  are correlated wih [p"],  which in turn are correlated with [i '];  and 
(ii) there are no other correlations between [k]  and [i '].  The second part 
of the kernel Qki corresponds to the opposite situations, i.e., when no such 
intermediate set of particles can be found. We call these parts the reducible 
and irreducible correlations, respectively. In the above sense, the kernels of 
the operators rSvP) (~)t3(~) and (~)Q~, are the irreducible correlation ~ k i  ~ ~2-,ii ~ 

functions for k>i,  k=i, and k<i,  respectively. Then Eq. (3.13) is the 
decomposition of complete correlations into irreducible ones. 

We discuss now several important properties of the Q-operators. It 
follows immediately from definition (3.11 ) that the operator (~ is self-adjoint. 

We also have the relations 

and 

Q*=Q (3.17) 

(3.18) 

which result from the symmetry of the definition (3.13)-(3.16). 

(3.19) 
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It was demonstrated in ref. II that the operators Q(#) and (#)Q can be 
inverted. Indeed, since these operators have the form of triangular matrices 
with identity operators on the diagonal, explicit expressions for the matrix 
elements of the inverse operators can be easily constructed. Here we list 
only the expressions which are needed in our further considerations. It has 
been proven in ref. II that 

and 

[Q(fl)] i ]] l  = [(f l )~]i~ 1 ---- /~i (3 .20)  

[O(#)]~ I=  [(#)O]y,-' =0 for j > i  (3.21) 

We discuss also several important properties of the operator (~>0 (~. It 
is shown in Appendix A that this operator is positive definite, i.e., for an 
arbitrary vector H, we have that 

(H, (~)O (~) H) >~0 (3.22) 

The equal sign in the above relation holds if and only if H =  0. Similar 
relations are fulfilled for all individual diagonal matrix elements (~)(~). 
Namely, for k = 1, 2,..., we have the inequality 

(Hk, (~)0~) Hk) >~ 0 (3.23) 

with equal sign if and only if H k = 0. 
We assume that the operator (~)0 (~), as well as individual integral 

operators (')0(~), can be inverted. This assumption is based on the properties 
(3.22)-(3.23). Problems may occur only in extreme situations. For example, 
the Fourier transform of n - l  (~)Q~) is S(k), the static structure factor, 
which for k--) 0 becomes the compressibility. In a dosed-packed state this 
would be zero and therefore (~)0~]) could not be inverted. We want to 
exclude such situations from the domain of applicability of our results. A 
detailed analysis of the structure of the kernels of the operators inverse to 
(~)(~) is given in ref. 12. It is shown that the kernel of such an inverse 
operator can be expressed in terms of many-particle correlation functions 
which are natural generalizations of the Ornstein-Zernike direct pair- 
correlation function. 

Finally, we introduce the notation 

0(~') = 0 (#) (~')0 (~) (3.24) 

and 

(~)0 = [0(~)] *= (~')0 (~) (#)0 (3.25) 
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We conclude from definitions (3.24)-(3.25) and the remarks above that the 
operators Q(~) and (~)Q can be inverted. 

In the  following section we analyze the consequences of the decompo- 
sition (3.13) (3.16). 

4. E N S K O G - L I K E  R E N O R M A L I Z A T I O N  

The decomposition (3.13)-(3.16) can be conveniently used to define 
two new vectors H and/4 ,  each vector fully describing the statistical state 
of a system. It was demonstrated in refs. I and II that such a change of 
representation, at the level of the evolution equations, gives rise to an 
Enskog-like renormalization of the collisional events. 

The vectors H and /4 are related to a given set h of cluster functions 
hi by the equations 

H = @Oh (4.1) 
and 

/ t =  ~{~h (4.2) 

Since Eq. (3.10), when supplemented with decomposition (3.13) and 
definitions (3.24)-(3.25), yields 

6F=  {~(~)/t (4.3) 

= Q(~)H (4.4) 

the vector H as well as H entirely describes the nonequilibrium state of a 
system under consideration. 

It follows from the above definitions and Eq. (3.25) that the vectors H 
and / t  are related through the operator ~)(~(~). Since the operator (~)Q(~) 
has the diagonal structure (3.15), only components of H and H with the 
same values of the indices are coupled, so that we have 

/J'k = (~)rS(~)~ k = 1, 2,... (4.5) ~ k k  " ~  k ,  

As we have noted in the preceding section the Q-operators that relate 
the vectors h, H, H, and 6F can be inverted. Therefore the representations 
of the state of a system in terms of these vectors are formally equivalent. 
However, the equivalence of the representations does not always hold on 
the level of individual components. This leads to very important differences 
between the representations if we consider an approximate description of 
the system, in terms of components with small values of the index only. 

The pair /4 and H is an exception in this regard. In this case, as we 
conclude from Eq. (4.5), for any k, individual components/Ik and Hk can 
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be evaluated one from another and therefore include equivalent informa- 
tion. In particular, for any i = 1, 2 ..... approximate representations in terms 
of respective vectors/1 and H with/~k and H k set equal to zero for all k > i 
are equivalent. 

We recall now the evolution equations for the vectors /~ and H 
derived in I and II. First we introduce a convenient notation. Let D be a 
binary-collision operator T+ or T+. We define a collisional operator 
Q[D]  by the following equation: 

where 

(Q,~[D])([i]I [k ' ] )  = l im <6f([i];F)D(F)6f([k'];F)> (4.6) 
oo 

Next, we also define 

and 

N 
D(F)= ~ D(ij) (4.7) 

i > j = l  

(~)O(#)[D] = [ O ( # ) ] - '  0 [ D ] [ ( ~ ) O ]  ' 

( f l ) 0 ( ~ ) r D l  : F 0 ( C ~ ) ] - - 1 0 [ D ] [ r  , 

(4.8) 

(4.9) 

The operators (~)Q(#)[D] and (#)Q(~)[D] describe binary collisions 
renormalized by irreducible equilibrium correlations. They appear in the 
evolution equations for the vectors H and H. Explicit expressions for the 
elements of the operators (~)Q(#)[D] and <z)(~(~)[D], along with some 
other important results, were given in ref. II. In particular it has been 
shown there that 

(a)t~(b)r"F ] (a)fl(b)rT l = 0  for r > k + l  (4.10) ~:~kr L ~ J =  ~ r k  L~-TA 

where (a, b ) =  (e, fl) or (fi, e). 
With the help of the above definitions the BBGKY hierarchy (2.8) can 

be transformed into hierarchies of evolution equations for the components 
of the vectors /~ and H. A detailed derivation of the hierarchies was given 
in ref. II. We list here only the final results. The evolution equations for the 
vector H, expressed for individual components, for positive times, form the 
following hierarchy: 

{a,+Lo, k}a~=(=)~(~) rT i n  <=),5<B)r~ ]/Tk 
Y . 2 ~ k , k - - l L a - - l l l k - - I  "Jr -~k ,  k k ~ - -  

+ (=)t3(#) [T_ ]/~k+ 1 k =  1, 2 . . . .  (4.11) - ~ k , k +  1 
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Note the operator T that appears in the subdiagonal elements of the 
operator at the right-hand side of the above equations. This should be 
contrasted with the BBGKY hierarchy (2.8), where only the operators 
appear. The operator T appears in Eq. (4.11) due to a commutation of 
the equilibrium correlations in the kernels of the operator (~(~) with the/2 0 
operator present at the left-hand side of (2.8). 

Note also the tridiagonal structure of the hierarchy (4.11) that results 
from the property (4.10). 

The evolution equations for the components of the vector H, for t > 0, 
have a similar form. Namely, we have that 

{#t+/2O, k}H~ (~)tS(~) [T_]HK_ +(~)tS(~lrT lr4 
~ ~ k , k - - 1  1 5d;k ,  k L  ~ A ~ k  

-k- (/~)t')(~) [-~'_ ] H k +  1, k =  1, 2,... (4.12) ~ k , k +  1 

In the above equation the T operator appears in the subdiagonal and 
diagonal matrix elements. 

As with the BBGKY hierarchy (2.8), the hierarchies (4.11) and (4.12), 
with operators T and T_, should be used for positive times only. For 
negative times, t < 0, one should replace T and T_ with the respective 
operators - T+ and - T+. 

Hierarchies (4.11) and (4.12) are formally equivalent to the BBGKY 
hierarchy (2.8). However, by the transformation we have achieved a very 
important goal: The collisional operators T and T are now renormalized 
by equilibrium correlations described by Q. Such renormalizations are of 
great importance if we consider approximate descriptions of systems in 
terms of functions depending on a small number of particle phases only. 
The renormalization of binary collisions achieved in Eqs. (4.11) and (4.12) 
is a generalization of the ideas at the basis of the Enskog equation. 

We note that not all binary-collision operators in the hierarchies 
(4.11) and (4.12) are renormalized. In the case of (4.12) the detailed 
calculations presented in ref. II lead to the conclusion that 

(z)tS(~)~,+ 1.kiT+_ ] = I4+ 1,kiT+_ ] (4.13) 

where the operator [k+ 1.,[T_+ ] is defined by the equation 

k 
I2+l,k[T+_] = ~ + l , k + l  2 T+_(i, k+ 1) (4.14) 

i=i 

The operator fk+l,k+~, defined in Eq. (3.8), has been introduced here to 
symmetrize the result of the action of the collisional operator. We can see 
from Eqs. (4.13)-(4.14) that the operator (~)tS(~)~zk+ ~,k[T+_ ] does not contain 
any equilibrium correlations. One can show that all the remaining collisional 
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operators appearing in the hierarchy (4.12) are, however, renormalized. 
Similar results hold also in the case of the hierarchy (4.11 ), where, in turn, 
the operator (~)tS(~) r'~ q does not contain equilibrium correlations. The . ~ k , k  + 1 k 4 •  l 

explicit form (4.13) of the collisional operator will be needed in our further 
considerations. 

It is interesting to consider a sequence of approximations obtained by 
truncating the hierarchy (4.11) or (4.12). The ith truncation is obtained, for 
i = 1, 2 ..... by setting/4k = 0 (Hk = 0) for all k > i. 

First of all we notice that the approximate kinetic equations obtained 
by the corresponding truncations made in /7 and H representations are 
equivalent. To see this, we recall that the approximate representations of 
the state of a system in terms of the truncated vectors/7 and H that have 
their components related by Eq. (4.5) are equivalent. [See comment below 
Eq. (4.5).] Our approximations are obtained by inserting such equivalent 
approximate representations into the exact evolution equations (4.11) and 
(4.12), so that the resulting time derivatives of the truncated vectors/4 and 
H must be also equivalent. 

It has been shown in ref. II that in the simplest case, i.e., when we 
truncate the hierarchies at the one-particle level, one gets the LREE. This 
convinces us that the renormalization of the collisional operators in 
Eqs. (4.11)-(4.12) is Enskog-like. The second truncation, with i =  2, gives 
the LREE supplemented with terms corresponding to the renormalized 
ring and repeated ring dynamical events. Both of the equations mentioned 
above are fundamental for the theory of a dense hard-sphere fluid. 

In the following section we consider the general truncation scheme. 
We show that the approximate kinetic equations obtained by such trunca- 
tions all imply an irreversible approach to equilibrium of a hard-sphere 
system. To show this, we define, for each kinetic equation associated with 
a given level of approximation, an entropy functional (or H-function). We 
then prove that the entropy functional monotonically increases in time, 
toward its equilibrium value. We also demonstrate that the equilibrium 
states are the only stationary solutions of the truncated hierarchy. 

In particular, on the simplest level of approximation, with i = 1, we 
recover in  this way the H-theorem for the LREE that has been proven 
previously by R6sibois. (5) The H-theorems obtained for i >  1 are new. 

5. A P P R O A C H  TO E Q U I L I B R I U M  

Before going on to discuss the H-theorems for the truncated hierarchies 
(4.11) and (4.12), we first consider some general properties of the entropy 
functional (1.4). For a system slightly displaced from equilibrium, with a 
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distribution p of the form (3.1)-(3.2), in the thermodynamic limit, to 
dominant order in the deviation from equilibrium we have that 

(~S ~-- S i p  l - s [ p e q l  = --  ~'~ limoo < [a#J(F)]2 > (5.1) 

where 6 ~ = ~ - ( ~ ) .  For  simplicity we have assumed here that the 
considered deviation of p from equilibrium preserves the number of 
particles, the momentum, and the energy, that is, 

N 

f dr ~. zo(i)[p(r)-p~ =0 (5.2) 
i=1 

where Za(v), a = 1,..., 5 is equal, respectively, to 1, vx, vy, v~, v 2. We assume 
that in the thermodynamic limit the entropy functional 6S remains finite, 
which is possible if the deviation is localized in space. 

The entropy functional 6S can be conveniently expressed by the 
vectors H and/4 .  Namely, from Eqs. (5.1), (A.2), and (A.6) we get 

~s= - ?  (H,/?) (5.3) 

As it follows from the definition of the scalar product in our vector 
notation, the entropy functional 6S is an infinite sum over k-particle terms 

with 

6S= ~ 6Sk (5.4) 
k = l  

k B 
6Sk = -- -~- (Hk, / ~ )  (5.5) 

It is clear from Eq. (5.1) that c5S is bounded from above by zero, 
namely 

6S~0 (5.6) 

where the equal sign holds if ~ = 0 only. Also, one can see from inequality 
(3.23) and the relation (4.5) between H k and /tk that all components 6Sk 
are nonpositive 

6Sk ~< 0, k = 1, 2,... (5.7) 

It is well known that the exact entropy functional (1.4) does not 
change under the exact time evolution of p(t). This property is preserved 
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if we retain the leading term alone in the expansion around equilibrium, as 
in Eq. (5.1). One can easily check using the time invariance of the 
equilibrium distribution and the Liouville theorem that indeed 

d 
6s(t) = 0 (5.8) 

We will use this fact to prove the H-theorem for the hierarchies (4.11) 
and (4.12) truncated by setting the components --kO(0 and Hk (~) equal to zero 
for all k > i. We will show that for a system described by the truncated 
hierarchies the corresponding truncated entropy functional 3S (~), defined 
by the equation 

i 

6S (~ ~ 3Sk <~ O (5.9) 
k=l 

is a nondecreasing function of time, 

d 6S(i ) >>- 0 
dt 

(5.1o) 

for all t ~> 0, and find the states for which 

d 6 s , ) =  0 
dt 

(5.11) 

Using the H-theorem, one can argue in a standard way that the truncated 
hierarchies describe the approach of the system toward equilibrium. 

The inequality (5.10) can be demonstrated in the following way: At 
any arbitrarily chosen time t o >/0 we consider the solution H(t)  of the 
entire hierarchy (4.12) with the initial condition 

H( to) = H(i)( to) (5.12) 

One can see then that at t = to 

O,Hk(t) = O,H~~ for k = 1 ..... i (5.13) 

and 

0,Hk(t) = 0 for k > i + l  (5.14) 

It follows from Eq. (5.13) that at t = to one can identify the time derivatives 
d(6S(~ calculated from the full and from the truncated hierarchies. 
Moreover, due to (5.14), for the full hierarchy we have that 

d 6S( t )=  d d 
d5 -~ (~S(')(t) "~- dt (~Si+ l ( t ) '  t = t o ( 5 . 1 5 )  
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But we know that the exact entropy functional 6S(t) does not change in 
time. Therefore we get the following relation: 

d bS~il(t)= d 
d--t - Y t  

t --- to (5.16) 

Since, according to our assumption, 6S~+ 1(to)= 0, inequality (5.10) follows 
now immediately from (5.7) and Eq. (5.16). 

To find the states for which the entropy functional 6S ~~ assumes its 
stationary value, we choose the following way. First we note that, since 
(5.16) holds, it is sufficient to consider, at any time t =  t o, the time 
derivative d(bS~+l)/dt calculated from the full hierarchy with the initial 
condition (5.12). In this way, by taking into account Eq. (5.5) and the 
relation (4.5) between the vectors H and/q ,  we get the following equation: 

d kB d 
-7- 6S,)  - 
dt 2 dt 

( H i +  1 , (~)()!~) 1 Hi+ i), t=to (5.17) ~---,l+ 1 , i +  

where 

H ~ + l ( t o ) = 0  (5.18) 

and 

{Ot+s t>~to (5.19) 

Equation (5.19) is obtained from the hierarchy equation (4.12) by setting 
k = i +  1, and neglecting at the right-hand side the two last collisional 
terms. According to our construction, for all l > i we have that Hz(t o )= 0 
and therefore the neglected collisional terms in Eq. (5.19) do not contribute 
to the time derivative in Eq. (5.17). In a derivation of (5.19) expression 
(4.13) for the (~tS(~) IT  3 operator has been also taken into account. ~ , i + l , i  - - J  

The evaluation of the time derivative at the right-hand side of Eq. (5.17) 
requires a careful treatment of the discontinuity of the function Hi+ t that 
appears for t >  to due to the singular hard-core interactions. Since the 
calculations are long, part of them are relegated to Appendix B and we 
present here only the final steps of the analysis. 

As a result of the detailed analysis presented in Appendix B, we 
conclude that 

d 6S(i)(t)=0 (5.20) 
dt 
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if and only if 

fi+ i.i [T_ ] H~~ = 0 (5.21) 

By taking into account the explicit form (B.1) (B.2) of the operator 
fi+~./[T ], we find that Eq. (5.21) is equivalent to 

cS(r,,,+ 1 - a  +) 0 ( V i ,  i +  1 "ri, i+l)Eb(i, i+ 1)-- 1][1 + P,,,+ 1] H}~ t ) = 0  

(5.22) 

where the operator Pi,~+~ permutes the particles i and i +  1. 
Here we can use the results obtained by R6sibois (s'6) in his papers on 

the H-theorem for the REE. He considered there an equation analogous to 
(5.22), but with a function H depending on a single-particle phase only. 
However, we can use here his results if we simply treat the phases of the 
particles 1,..., i -  1 as parameters. By adopting R6sibois' result we conclude 
that a solution of Eq. (5.22) has the following form: 

5 

H~~ ~ ga([i--1]);fa(V,) (5.23) 
a = l  

where Za(v) are the additive collisional invariants and f and ga are 
arbitrary functions. 

We assumed that the entropy functional 6S ") is finite, which property, 
due to inequalities (5.9)-(5.10), is preserved in time. For states with finite 
6S (i) the function H} ~ tends to 0 when ri ~ oo. Therefore all the functions 
g~, have to vanish. Next, since H} ~ is a symmetric function of phases of 
particles, one can see from Eq. (5.23) that H} ~ can depend on the positions 
of particles only, so that we have 

H}~ t) = H~~ ..... r~) (5.24) 

This is a sufficient and necessary condition on the vector H (i) for the 
entropy functional 6S (~ to assume a stationary value at a time t. 

To complete the proof of the H-theorem, we should find all stationary 
solutions of the truncated hierarchy (4.12). Equation (5.20), and therefore 
also (5.24), obviously is a necessary condition. The ith equation of the 
truncated hierarchy (4.12) with H} ~ given in the form (5.24) is then 
equivalent to the following condition: 

s H")= ,? , i  [-T ]H} ~ (5.25) 0, i i , - - 1  

One can see from the expression (4.14) for the operator [i,i I[-T_] that 
due to the factor 0(--Vk~'~kt) that appears in the definition (2.1) of the 
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operator T_ the right-hand side of the above equation vanishes for particle 
velocities such that v~1" fkt > 0 for all pairs with k, l = 1 ..... i. Thus, since a 
stationary H} i) depends only on particle positions, Eq. (5.25) can be 
fulfilled only if H} i) is constant. For  states with a finite entropy, H~ ~) 
vanishes at infinity and therefore condition (5.25) can be fulfilled only if 

H}i~(t) = 0 (5.26) 

Using this result, from (5.25) we obtain again Eq. (5.21), but now with the 
subscripts i +  1, i replaced with i, i - 1 .  Therefore, we can repeat the 
arguments and show that H~ (i) = 0 for all k = 1,..., i. As a result, we find that 
the only stationary solution of the truncated hierarchy (4.12) is the vector 

H (~) = 0 (5.27) 

Using similar arguments, one can show that a solution H(*)r 0 of the 
truncated hierarchy cannot remain, over a finite interval of time, in a 
subspace of vectors for which 6S assumes a stationary value. 

The above results can be used to argue, in a standard way, that the 
truncated hierarchy describes the approach of a hard-sphere system toward 
equilibrium. Namely, since aS(t) is an increasing function bounded from 
above, it approaches a stationary value when time goes to infinity. One 
usually assumes that this can happen only if the solution of the hierarchy 
itself also approaches a stationary value. Since the only stationary solution 
of the hierarchy is the equilibrium solution H (i) = 0, we conclude then that 
the system approaches equilibrium. A rigorous proof that solutions of a 
kinetic equation do approach the equilibrium value requires, even for a 
linear theory, a more detailed analysis of the structure of the collisional 
operators. 

6. T I M E - C O R R E L A T I O N  F U N C T I O N S  

A very important application of the LKT is the calculation of 
equilibrium time-correlation functions. In this section we briefly discuss 
some aspects of this application. In particular, we show that the symmetry 
properties of time-correlation functions that reflect the symmetry of 
evolution equations under reversal of time and particle velocities are 
preserved when the truncated hierarchies (4.11) and (4.12) are used to 
approximately describe the evolution of a hard-sphere system. Indeed, one 
expects that the symmetries are preserved on the approximate level of 
description since the truncations are obtained from the exact evolution 
equations by using closure approximations that are manifestly symmetric 
with respect to time or velocity reversal. 
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The time-correlation function for two observables A(F) and B(F) can 
be defined in the following way: 

G.B(+t)=l~fdr6A*(r)~B(r(gt))peq(r), t>~o (6.1) 

The interest lies almost exclusively, in time-correlation functions between A 
and B that both have a linear group decomposition of the form (A.1). In 
such cases, to describe the time-correlation functions one can naturally 
apply the LKT formalism. Usually, in physically interesting cases, only the 
first and possibly the second term in the group decomposition of A and B 
differs from zero. 

For hard spheres, the problem of calculating the time-correlation 
function (6.1) may be formulated in the following way. First one should 
find the "distribution" c~pB(F; i t )  that solves the pseudo-Liouville 
equation 

•,6pB(F; i t ) =  T-L+(F) 6pB(F; +_t) (6.2) 

with the initial condition 

6pS(F; O) = 6B(F) p~q(F) 

Next we calculate the "average" 

GAB( +_ t) = f dFSA*(F) Spa(I"; -t- t) 

(6.3) 

(6.4) 

By L+(F)  we denote the hard-sphere pseudo-Liouville operator, defined 
by the equation 

N 

/S,_+(F)=/_]o(F)___ ~ T• (6.5) 
k > l = l  

Initial condition (6.3), supplemented with the group decomposition of 
the function B, is consistent with the basic assumption of the LKT, 
formulated in Eqs. (3.1)-(3.2). We can thus use, in this context, the for- 
malism described in Sections 3 and 4. 

To this end, we first calculate from 6pS(-t-t) the reduced distribution 
functions 6FB, k(+_t). In the next step, we apply the transformation 

"described in detail in Section 4 to obtain two equivalent representations 
/~B( - t) and HB( _+ t), related to the set of reduced distribution functions by 
equations analogous to (4.3) and (4.4). The evolution of the vectors 
/TB(+_ t) and Hs(_+ t) is governed by the respective hierarchies (4.11) and 
(4.12), with proper modification in the case of negative times. 
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Let us denote by 2 + and ~ -+ the linear operators that generate the 
evolution of the vectors /7 (+ t )  and H(+_t).  According to Eqs. (4.11) and 
(4.12), the matrix elements of these operators are 

- +  {s ]}+3k+ (~)D{~) I[T+ ] ~ k l l  ~ -  ~ k l  - -  5 ~ k k  L +_ - -  l , l  ~ k , k +  _ 

+ 6 k  (~)A(~) I[T+ ] (6.6) - -  - -  1 , l  5 ~ k , k  _ 

and 

S ~  C$kl{s (~)tD(~)rTk:kki- + ]}+Ok+ {~)t%(~) r ~  1 = _ - -  l , l  ~ k , k + l L ' l  + A  

+6k_l,tUJ)tS(~) rw ] (6.7) 
- -  ~ . k , k - -  I L Z •  

With this notation, we can write the solutions of the hierarchies (4.11) and 
(4.12) in the form 

HE( +_ t) = exp [ -T- 2 ~ t ] H E (6.8) 

and 

Hs( +_ t) = exp[ -T- :L *~ -v- t] H e (6.9) 

where H E and H 8 denote the initial conditions at time t = 0. The vectors 
HE and Hs~ are related to the group decomposition elements hB of the 
function B by relations analogous to (4.1) (4.2). 

The time-correlation function G(_  t) can be conveniently expressed in 
terms of the H-vectors. Using Eqs. (6.8)-(6.9) and the results of Appendix 
A, we get the equations 

G A E ( + t )  = (HA,  exp[-T- 2P+ t] HB) (6.10) 

= (HA, exp[-T- 2PT t] HE) (6.11) 

The above expressions are a convenient starting point to discuss some 
important symmetry properties of time-correlation functions. 

The first symmetry property considered is the following' 

GAB(t) = G EA( -- t) (6.12) 

It results from the definition (6.1) of the time-correlation function, the 
Liouville theorem, and the time invariance of the equilibrium distribution 
function. The next important symmetry, which is a consequence of the 
invariance of the pseudo-Liouville equation with respect to simultaneous 
inversion of time and velocity, can be expressed as follows: 

GAs( t )  = G~A, pB( -- t) (6.13) 

822/66/1-2-40 
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where the operator /~ changes the variables v i into - v i  for all i =  1, 2 ..... 
(We may consider here the inversion of the spatial variables ri instead; the 
Liouville operator is invariant under inversion of the particle phases and 
therefore the inversions of the velocities and the space coordinates are 
equivalent in the present context.) The symmetries (6.12) and (6.13), taken 
together, result in the important symmetry property 

GAB(t) = Gr ~A(t) (6.14) 

On the level of a renormalized desciption of the system, in terms of the 
vectors H and H, the symmetry (6.12) can be related to the following 
property of the operator 2-+:  

E 2 - + ]  1 = - Y +  (6.15) 

This property is a direct consequence of the definitions (6.6)-(6.7) and the 
symmetry properties of the Q-operators, derived in ref. II. To relate the 
symmetry (6.12) of the time-correlation function to the property (6.15) of 
the renormalized Liouville operator 2,, we note that from (6.15) we get the 
relation 

(H A, e x p [ 2 +  t ] /TB)= ( e x p [ - 2 , -  t] HA, ErB) (6.16) 

and that the representations (6.10) and (6.11) of the time-correlation 
function are equivalent. 

The next symmetry property of the time-correlation functions, given in 
Eq. (6.13), is related, in a similar way, to the following property of the 
operators 2,_+ : 

/~2, +/~ = - 2 '  (6.17) 

The above relation is a consequence of the definition (6.7), the relation 

/~T+/~ = - T  (6.18) 

and the fact that the equilibrium distributions included in the kernels of the 
Q-operators are invariant under the inversion of velocities. [To obtain the 
symmetry (6.13), one can also use a relation for the 2-operators  that is 
analogous to (6.17).] 

Let us now consider the ith truncation of the hierarchies (4.11) and 
(4.12). We can easily argue that the symmetry properties (6.12)-(6.13) of 
the time-correlation functions--and therefore also the symmetry (6 .14)-  
remain valid at the approximate level of description. To show this, we 
simply notice that the symmetries (6.15) and (6.17) hold not only for the 
full 2,-operators, but also for the truncated ones, with the matrix elements 
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- - +  
5('~3 and &a~ set equal to zero if k or l>i .  Taking this into account, 
together with the equivalence of the ith truncations of the hierarchies (4.11) 
and (4.12), one can repeat the arguments given above for the case of the 
exact hierarchies and show that the symmetry properties (6.12)-(6.14) hold 
also if time-correlation functions are evaluated approximately by using the 
truncated hierarchies. 

We recall that, within our approximation scheme, the LREE is obtained 
as a special case by truncating on the one-particle level. Therefore, at this 
level, we recover here the symmetry properties of the linearized Enskog 
operator, which have been extensively studied in the literature. (13 15~ 

7. D I S C U S S I O N  

For the approximate LKT derived by Cichocki and Btawzdziewicz a 
strong H-theorem could be proved: Entropy is strictly increasing in time, 
unless the ith reduced distribution function depends on position coordinates 
only. Although it follows that the only stationary solution of the LKT is 
the equilibrium solution, this does not suffice to prove the asymptotic 
approach of the reduced distribution functions to zero for long times. 

In addition, we showed that the usual symmetry properties of equi- 
librium time-correlation functions are preserved under truncations of the 
hierarchy, as employed in the LKT of Cichocki and Btawzdziewicz. 

One may speculate that application of the maximization of entropy 
principle (2'4~ at the level of the /-particle distribution function f([i-1) will 
give rise to nonlinear kinetic equations for which, in the case of hard 
spheres, a strong H-theorem can be proved. One expects that under 
linearization these kinetic equations would reduce to the LKT of 
Btawzdziewicz and Cichocki. In fact, the LKT of Btawzdziewicz and 
Cichocki can be derived straightforwardly using the maximization of 
entropy principle applied to the approximate entropy functional (5.1). 

A P P E N D I X  A 

In this appendix we derive Eqs. (3.10) and (3.22)-(3.23) and some 
other important relations for the Q-operators introduced in Section 3. We 
start by analyzing the static structure of equilibrium correlations. 

Consider two phase-space functions A(F) and B(F), both with a 
group decomposition analogous to (3.2), so that we have 

N N N 

a(F)= 2 ha, l(xi) q- ~ ha, 2(xi ,xj)+ 2 ha,3(xi, Xj, Xk)q- -.. 
i - -  1 i > j - -  1 i > j > k -  1 

(A.1) 
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where a = A, B. The equilibrium correlation function between A and B is 
defined by 

GAe = lim (6A*(F) 6B(F)) (A.2) 

By inserting into Eq. (A.2) the functions A and B expressed in the form 

1 
a(r) = ~ ~ f'dEi] f([ i];  F)h~,i([i]) (A.3) 

i = 1  

where a=A, B and f ( [ i ] ;  F )  is defined in Eq. (2.6), and then using the 
definitions (3.11) and (3.3)-(3.6), one gets 

GAB = (hA, Qhe) (A.4) 

Equation (3.10) can be obtained in a similar way, by using definition (2.5) 
and Eqs. (3.1)-(3.2). 

The correlation function GAe can be expressed in terms of the H-vectors, 
defined by Eqs. (4.1) and (4.2) (with h=hA or he). Namely, taking into 
account decomposition (3.13) and the property (3.18), one gets 

GAB = (HA, i~)O_.i~'~ HB) (A.5) 

= (HA, Be) (a.6) 

It is obvious from definition (A.2) that for any A 

GAA ~ 0 (A.7) 

Hereafter we identify all phase-space functions which differ for overlapping 
configurations only. With this convention applied, we conclude from (A.2) 
that GAA = 0 if and only if A = 0 or, equivalently, h A = 0. It was shown in 
ref. II that the operator r can be inverted. Therefore the equal sign in 
relation (A.7) holds if and only if H A =0. From this analysis and relation 
(A.5) property (3.22) of the r operator immediately follows. The 
property (3.23) of individual diagonal matrix elements can then be 
obtained by substituting into (3.22) a vector H with the components 
Hi = 6ik Hk, where i = 1, 2 ..... 

Expressions analogous to Eqs. (A.4)-(A.6) can also be obtained for a 
time correlation function GAe(t), as defined in Eq. (6.1). To obtain the 
representation for GAe(t) corresponding to Eq. (A.4), one should simply 
replace in this equation h~ with he(t), the vector of the group-decomposition 
elements of the distribution pn(t). [-The distribution pC(t), associated with 
the time-correlation function, is defined by relations (6.2)-(6.3).] Relation 
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(6.10) can then be obtained in a similar way as Eq. (A.6). Hence (6.11) is 
obtained by using the relation (4.5) between H and H-representations, 
together with the symmetry of the operator (~)0 ~). 

A P P E N D I X  B 

In this appendix we demonstrate from Eqs. (5.17)-(5.19) that the 
entropy functional 6S (i) assumes a stationary value if and only if condition 
(5.21) is satisfied. The main problem when calculating the time derivative 
of 6S (i) from Eq. (5.17) is to correctly take into account the discontinuity 
of the function Hi+1(to+Z ) that appears at z ~>0 due to the singular 
character of the hard-sphere interaction. 

We start by rewriting the operator [;+ 1, [ T ] in a more explicit form. 
By taking into account Eq. (4.14) and definition (2.1) of the operator T ,  
we arrive at the following expression: 

i + l  

[~+~,~[T_]H,([i];t)= ~ 6(G,--a+)oa(k')([i+l];t) (B.1) 
k > l - - 1  

where 

o(kl)([i + I ] ;  t) = 0(vkt. fkl) IVkl" fkl] [/)(k/) - 1 ](/~k,j+ 1 +/~l,i+ 1)Hi([ i] ;  t) 

(B.2) 

and the operator/~u permutes the phases of particles i and j. The solution 
of Eqs. (5.18)-(5.19) has then the form 

t to i +  1 

H~+~([i+l];t)=fo dre -~&~+~ ~, 6(G~--rr+)o~kt)([i+l];to+Z) 
k > / = l  

(B.3) 

Assuming that o~(kt)([-i + 1]; to+ r) is a sufficiently smooth function, up to 
terms of the order r, the solution (B.3) can be approximated by 

i + 1  

H~+l([i+l];to+Z)= ~, Z(Xk, Xl;Z)~O(kt)([i+l];to)+O(z) (B.4) 
k > l ~ l  

where 

X(xk, xt; r)=O(Gl+ [vk~'rkt]z--a+)--O(rkt--a +) (B.5) 

To obtain from Eq. (5.17) the time derivative of 6S ~), it is sufficient to 
evaluate the linear term in z in 

6S~+l(to+Z)= (Hi+l(to+Z), (~),5(~) H ct +z ) )  (B.6) Y - - i +  1 , i +  1 i + l t ,  0 
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Let us insert (B.4) into the quadratic form (B.5). The linear contributions 
result only from those terms in (B.6) in which two factors )~(xk, xt; r) with 
the same pair (kl) of particle variables meet together. Taking this into 
account, one can show that 

i+1  

k > - l =  1 

a + )(co (k~ 3 (kl) ~i+l , i+l (D(k l ) )k  l (B.7) 

where the scalar product (a (k~ b(kO)k ~ of two functions a (k~ and b (k~ is 
defined by the equation 

( a  (kt), b(kl))k ! 1 
f a(k~ + 13) b(~~ + 13) Pk.,Pt,,+ ~ d [ i -  13 (i + 1)! 

(B.8) 

Here the variables xk and x~ are not integrated over and are treated as 
parameters. The kernel of the operator A}~)~,i+l is equal to the sum of all 
those terms contributing to (~)t3(~/ (ri J-1 ]1[( i  + 1) ' ])  that include the ~ i + 1 , i + 1 ~ L  
product (1 +/3kl) ~(x~ - x~) 5 ( x t -  x~). 

Our proof can now be completed by noting that the operator ~(k~ " h i +  1,i+ 1 

is positive definite with respect to the scalar product ( ' ,-)kt. This property 
can be demonstrated by adopting the arguments given in Appendix A 
for the case of the operator (~)Q(~). Namely, the basic relations 
between Q-operators, used in the proof, remain valid if the kernels of the 
operators are replaced by their respective parts that include the product 
(1 +/sk~) 6 ( x k - x ~ ) 6 ( x z - x ; ) ;  by repeating the arguments of Appendix A 
(in inverse order), one can transform the scalar product at the rhs of 
Eq. (B.7) into the corresponding positive-definite ensemble average, with 
the variables xk and xt treated as parameters. 

For ~(k~) positive definite, it immediately follows from (B.7) that ~ * i + 1 , i + 1  
d(3S(~))/dt = 0 if and only if 

6(r ~ -  a + ) m(ko( [i  + 13; to) = 0 (B.9) 

for all k, l~< i +  1 or, by taking into account relation (B.1), if and only if 
(5.21) holds. 
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