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In a previous paper we developed a mode-coupling theory to describe the long 
time properties of diffusion in stationary, statistically homogeneous, random 
media. Here the general theory is applied to deterministic and stochastic Lorentz 
models and several hopping models. The mode-coupling theory predicts that the 
amplitudes of the long time tails for these systems are determined by spatial 
fluctuations in a coarse-grained diffusion coefficient and a coarse-grained free 
volume. For one-dimensional models these amplitudes can be evaluated, and the 
mode-coupling theory is shown to agree with exact solutions obtained for these 
models. For higher-dimensional Lorentz models the formal theory yields expres- 
sions which are difficult to evaluate. For these models we develop an approxima- 
tion scheme based upon projecting fluctuations in the diffusion coefficient and 
free volume onto fluctuations in the density of scatterers. 
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1. I N T R O D U C T I O N  

In  the  p r e v i o u s  p a p e r  ( P a p e r  I) (1) we  d e v e l o p e d  a m o d e - c o u p l i n g  t h e o r y  to 
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homogeneous, random medium. In the present paper this general theory 
will be applied to a number of systems, including deterministic and stochas- 
tic Lorentz models and hopping models. The results obtained will be 
compared with results available from other methods--exact solutions, 
systematic and approximate kinetic theories, and computer simulations. 

We begin with a review of the mode-coupling theory and a summary 
of the results obtained from it. The starting point of the theory is a 
phenomenological diffusion equation with spatially varying parameters: 

0c(r, t)/Ot = - V .j(r, t) (1.1a) 

j(r, t) = - K ( r , X )  �9 7(c(r, t)/q/(r,X)) (1.1b) 

where c(r, t) is the concentration and j(r,t) the current density of (nonin- 
teracting) diffusing particles. The functions K(r, X) and +(r, X) are fixed in 
time, but vary with position to account for the static disorder in the 
medium in which the diffusion is occurring; X is a set of parameters 
describing the particular configuration of the medium. For example, in a 
hopping problem X might refer to the set of random locations of the 
hopping centers or to the random transition rates between them. K(r, X) is 
the local Onsager coefficient and V(e/~) is the appropriate driving force 
for the diffusion according to the linear laws of irreversible thermodynam- 
ics, as shown in Paper I. Since there is no driving force when the concentra- 
tion attains its equilibrium value, it is clear that ~,(r,X) must be propor- 
tional to the equilibrium concentration of diffusing particles, where the 
constant of proportionality may still depend on the configuration X. In the 
Lorentz models we fix this constant by requiring that +(r, X) has the value 
unity whenever r is outside of the scatterers. This means that +(r, X) equals 
the overlap function W(r, X), which vanishes whenever the moving particle 
is interacting with a scatterer, and equals unity elsewhere. Thus, the integral 
of ~(r,X) over the whole volume V of the system, i.e., 

~o(X ) = ;dr  W(r, X ) (1.2) 

is the free volume available to a moving particle in configuration X. In 
hopping models on a regular lattice with N sites, labeled n, it is not 
meaningful to define configurations, where the moving particle can be 
considered "free," and +.(X) can only be determined up to an arbitrary 
constant, which does not depend on the configuration X. This constant is 
fixed by the normalization 

1 ~]~ , (X)  = 1 (1.3) 

where the sum extends over all sites of the lattice. 
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The functions c(r,t), K(r,X), and tp(r,X) in (1.1) are all to be consid- 
ered coarse grained. The coarse graining is performed by averaging over 
cells in configuration space of volume V c = Lf  (d is the dimensionality). 
The coarse-graining length Lc must be much larger than the correlation 
length of the static fluctuations. Finally we note that our mode-coupling 
theory is only applicable when the mean square fluctuations in K(r, X) and 
~p(r,X) are small compared to the average values (K(r, X)) 2 and (~p(r, X)) 2, 
respectively. 

Assuming that (1.1) correctly describes the decay of concentration 
fluctuations in equilibrium, we can use it to calculate the intermediate 
scattering function 

(e-k(O)~k(t)) 
F(k, t) = (0 k(0)~k(0) ) (1.4a) 

The average ( . . - ) =  f d X o ( X ) ( . . .  )x represents a double average: the 
last one is an average over the configurations X with a weight function 
p(X), that will be specified for each of the models to be discussed; the first 
one, ( �9 �9 �9 )x,  is a grand canonical average (fugacity f)  over the phases of 
M noninteracting particles, moving in a frozen configuration X of the 
random medium. The Fourier transform is defined in the usual fashion and 
the carets represent a deviation from the equilibrium value in a frozen 
configuration, i.e., ~k = Ck -- (Ck)x" Since the moving particles are noninter- 
acting and Poisson distributed, the average in (1.4a) can be reduced to a 
symmetrical average over a single moving particle and a subsequent aver- 
age over the configurations X, i.e., 

F ( k , t ) -  1 ~2 e ikaxi(O = (eik~x(t)), (lAb) 
( M )  i= 1 / 

where the relation (~_k~k) = ( M )  has been used. 
The function F(k, t) generates the moments ([~x(t)]') of displacement 

in the x direction with Ax(t)= x ( t ) -  x(O), where the x axis is taken 
parallel to k. The first derivative of the mean square displacement is the 
time-dependent diffusion coefficient D(t), and its second derivative is (the 
analog of) the velocity autocorrelation function q,2(t), whenever a "ve- 
locity" can be defined, i.e., 

D(t)  = Ax(O 
(1.5) 

~2(t) = dD(t)/dt  = (vx(O)vx(t))s 

where Vx(t ) is the x component of the "velocity" at time t of a single 
particle. The first derivative of the fourth cumulant of the x displacment is 
the super-Burnett coefficient B(t); its second derivative is related to the 
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Burnett correlation function d?4(/), i.e., 

B(t)  = ( d / d t ) ( ( [ A x ( t )  ]4)s -- 3([ Ax(t)12) 2}/4! 

= D4(t ) - ( ' d r  ( D ( t ) -  D ( ' c ) } D ( t -  "c) 
dO 

with 

~4(t) ~-" dD4(t)/at 

= ( ' d ,  
dO J r  

(1.6) 

eo2( t ) ~ - 2~rD 2ix(4~rDt )-(d+ 2)/2 

q,4(t) ----- D 22xr d/2 

and for the transport coefficients: 

DAr 
D4(t) "~ 04  2q'/'('-d ~ 2) (4~rDt)-(d-2)/2 

O(2i r  + AK) 
B(t) = B 4 ~ r ( d -  2) (4~rDt)-(d-2)/2 

For the special case d = 2 the last two equations reduce to 

D4(t ) ,~ (DA~/4~r)log t 

8(t) +  x,,)/8 ]logt 
These expressions contain the mean square fluctuations 

A K = (/~K0(X): 6Ko(X))/[dV(Pq~)21 

If the correlation functions ff2(t) and qb4(/) decay sufficiently fast, D(t), 
B(t), and D4(t ) approach, respectively, the ordinary diffusion coefficient D, 
the super-Burnett coefficient B, and the modified super-Burnett coefficient 
0 4, As shown in Paper I, the mode-coupling theory yields the following 
long time results for arbitrary dimensionality; viz., for the correlation 
functions: 

(1.8a) 

(1.8b) 

(1.9a) 

(1.9b) 

(1.9c) 

(1.9d) 

(1.1o) 
= < [ ar ]2>/(vr 

where 8A (X) = A (X) - (A (X))  refers to the deviation from the average 
over the configuration X, and the subscript zero refers to a spatial average 

- (vx(O)vx('r))s(Vx('C')vx(t))s] (1.7) 
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of some local quantity, i.e., A0 = f drA (r). We further introduced 

(~o (X) )  = V(q~( r ,X) )=  V+ 
(1.11) 

(Kge(X)) = v < KoB (,, X) )  = VD+ 8~ 8 

so that the fluctuations are given by 

 Kge(X) = f dr[ Koe(r,X ) - D68~,/~J 
(1.12) 

In the next section of the paper the mode-coupling results are compared 
with exact results for several stochastic Lorentz models and hopping 
models, whereas in Appendix A.1 the corresponding expressions for the 
coarse-grained Onsager coefficient K(r, X) are calculated. In Section 3 we 
apply the mode-coupling theory to the overlapping and nonoverlapping 
Lorentz gases. A comparison of the mode-coupling results with other 
theoretical and numerical results for the Lorentz gas is given in Section 4, 
and Section 5 presents our conclusions. 

2. S T O C H A S T I C  MODELS OF DIFFUSION 

2.1. One-Dimensional Stochastic Lorentz Model 

In this section we discuss several models of diffusion for which exact 
results are known. The first of these is the one-dimensional stochastic 
Lorentz model which is analyzed in Refs. 2-4. 

In this model noninteracting point particles move with a constant 
speed v on a line. Fixed, pointlike scatterers are located at random on the 
line. When a moving particle meets a scatterer it has probability p of being 
reflected and (1 - p )  of being transmitted. The distances l~ between neigh- 
boring scatterers are independent random variables, sampled from an 
interval distribution which has a mean l = (l~) (here l -  1 = n is the average 
density of scatterers) and a variance A l = ( ( l  n - l ) 2 ) / l  2. The exact diffu- 
sion coefficient (3'4) is known to be D = (1 - p ) v l / 2 p .  

In our mode-coupling calculation we need the statistics of the coarse- 
grained Onsager coefficient K ( r , X )  and free volume fraction qJ(r,X).  The 
free volume fraction q~(r,X),  defined above (1.2), does not depend on r, 
since neither the number of scatterers nor their positions influence the 
equilibrium distribution of moving particles. Thus, spatial fluctuations in 
t~ ( r ,X)  are absent, so that qJ = 1 and A; = 0. 
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Next, we consider the local density of scatterers n(r,X) or local 
volume per scatterer l(r,X)= 1/n(r,X) in a coarse-graining cell of given 
size V~, centered around position r with a fluctuating number of scatterers 
Nc(r ). Hence 

l(r,X) = 1/n(r,X)= VJU~(r) (2.1a) 

with 

No( r )=  ~ 1 
n ~ Vc(r ) (2. lb) 

V c= ~ l.=fixed 
n ~ Vc(r) 

As shown in Appendix A.1, the spatial fluctuations 6K(r, X) in the coarse- 
grained Onsager coefficient are completely determined by the fluctuation in 
n(r,X) or l(r,X), and we have from (A.6) in Appendix A.1 

3(K(r,X)) ~l(r,X) = ~l  Sl(r,X) 8K(r,X)- ~(l(r,X)) (2.2a) 

where (K(r,X)) = D. Hence, the fluctuation in the zeroth-order Fourier 
component 8Ko(X), defined in (1.12), is 

cells 
8K0(x) = ( ~D ) ~ Vc[ l(r~,X)-  l] (2.2b) 

Its mean square fluctuation follows from (1.10) and (2.2b) as 

A K = (VDa)-I(oD/OI)2(V/Vc)V~2([I(r~ ,X) - /]2) (2.3) 

The factor V/V~ represents the total number of coarse-graining cells. We 
further used the property that fluctuations in different coarse-graining cells 
are uncorrelated. The l fluctuations in (2.3) yield to dominant order in 
1/v~ 

<[ I ( r ,X)  - 112> 
-- 2 

= (llN~) Y. ((~. - ~ ) ( ~  - ~)) 
n , m  E Vc(r ) 

= (i/~vo)((~. - l)b = t'A,/v~ (2.4a) 

where Nc is the average number of particles in a coarse-graining cell. Thus, 
our final result for A K is 

A x = lA t (2.4b) 

Using these results in combination with (1.8) and (1.9) yields the following 
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results for the time correlation functions at large t: 

 2(t) = - 

q~4(t) = o( t -1/2) 
and for the Burnett functions: 

D4(t ) ~ o(t 1/2) 
B ( t )  ' /2 

(2.5a) 
(2.5b) 

(2.6a) 
(2.6b) 

where l = 1/n. The symbol o(t ~) indicates that t-~o(t~)~O as t o  m. The 
exact long time results for ~bz(t ) and B(t), found in Ref. 3, agree with the 
mode-coupling predictions in the previous equations, whereas the exact 
results q~4(t).~t -3/2 and D4(t) ~'-~ D 4 + o(t ~ are consistent with the above 
predictions. 

2.2. One-Dimensional Waiting Time Lorentz Model 

In the previous model, the simple topology of one dimension permitted 
us to express fluctuations in the Onsager coefficient in terms of density 
fluctuations. In the present subsection, we discuss the one-dimensional 
waiting Lorentz model (3'5) which shares this simplification but also has 
fluctuations in ~p(r,X). In this model the moving particle makes instanta- 
neous jumps between neighboring sites with stochastically distributed wait- 
ing times between the jumps. There are site-independent waiting time 
distributions fi(t) for backward jumps--jumps in the direction opposite to 
that of the preceding jump- -and  ~(t) for forward jumps--jumps in the 
same direction as the preceding one. The sum of these distributions is 
normalized, hence 

foo~ ~(t)]  = 1 (2.7a) 

and 

foo~dt [f i ( t )  + ~ ( t ) ] t =  ~" < ~ (2.7b) 

where ~" is the mean total waiting time. The intervals l, between neighboring 
sites are independent random variables with the same properties as for the 
stochastic Lorentz model, viz., (ln) = l = 1/n and ((l, - / ) 2 )  = 12Al. 

Van Beijeren (3) has found an exact solution to this model from which 
one can derive both the diffusion coefficient and the long time behavior of 
the correlation functions of interest here. The diffusion coefficient satisfies 

D = (1 - p)t2/2p~ (2.8) 
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where 

= fo~dt fi(t) (2.9) P 

In the waiting time Lorentz model the free volume ~(r ,X)  has spatial 
fluctuations, since moving particles can sit only on sites. Thus, the coarse- 
grained qJ(r,X) is proportional to the coarse-grained density of scatterers 
n(r,X) = 1/l(r,X), and its fluctuation ~q~(r,X)= a~l(r,X) where a is a 
constant independent of the configuration of sites. A derivation similar to 
(2.2)-(2.4) yields A+ -- lA/. 

As discussed in Appendix A.2, the coarse-grained value of the local 
Onsager coefficient depends on the local density of scatterers, i.e., 

K(r,X)  = D(r ,X)+(r ,X)  = l(r,X)(1 - p ) / 2 p f  (2.10a) 

By following steps similar to (2.2)-(2.4) one finds 

~K(r,X) = ( ODe Ol )61(r,X) (2.10b) 

which leads again to the equality A K = IA l. 
From the above results for k, D and h~ and A K in combination with 

(1.8) and (1.9) we obtain the mode-coupling results for the correlation 
functions: 

~2(t ) ~ _ ~lAl(D/qr)l/2 t-3/2 
(2.11) 

~4(t) ~ 1 IAzD 3/2(~rt)-,/2 

and for the Burnett functions: 

D4(t ) ~ IA,D 3/2(t/~r)'/2 
(2.12) 

B ( t) ~ (3/2)lAID 3/2( t / ~) ' /2 

These mode-coupling results are in full agreement with the results from the 
exact calculations. (3'5) 

2.3. One-Dimensional Random Barrier Model 

In this model (6 ~4) the diffusing particles make instantaneous jumps 
between neighboring sites on a line with a constant spacing l, according to 
the master equation: 

[~ = u , - l (Pn - I -  P~) + P,(Pn+, - Pn) = (1 - E~-I)u~(E~ - I)P~ (2.13) 

where E~ ,  =f~+l  and (E, - l ) / l  and (1 - E~-l)/l are the analogs of a 
derivative in finite difference calculus, Pn(t) is the probability of finding a 
particle at site n at time t. The jump rates ~,, are positive random variables, 
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sampled from a site-independent distribution for which (1 /vn)= r and 
((1/vn - r) 2) = r2A~ are both finite. The quantity "r is the average waiting 
time for either a jump to the right or a jump to the left. The exact value of 
the diffusion coefficient is D = 12/r. The equilibrium solution ~p, to (2.13) 
is a constant, independent of the set { v, }. Thus ~, = 1 on account of the 
normalization (1.3), so that ~ ( r , X ) =  1 does not have spatial fluctuations, 
and A+ = 0. 

Next we consider the coarse-graining procedure, in which the system 
is divided into coarse-graining cells, each containing N c scatterers. The 
coarse-grained version of (2.13) reads 

Oc(r, t)/Ot = VK(r ,X)Vc(r ,  t) (2.14) 

where (E~ - 1) and (1 - En -1) have been replaced by lV, and the coarse- 
grained Onsager coefficient K(r,X) has been calculated in Appendix A.3 
with the result 

K(r ,X)  = 12/r(r,X) (2.15a) 

where the local waiting time is 

1 ~,, 1 (2.15b) 

The fluctuations in K(r, X) are completely determined by the fluctuations 
in the local waiting time r(r, X). Hence, by following the steps taken in the 
derivation of (2.2)-(2.4) we find 

aK(r ,X)= ~r  &(r ,X)  
(2.16) 

~ 0 ~  = ( ~ ) ' ~  

where we used the relation V c = Ncl, so that Ate in (1.10) becomes A K 
= lay. The mode-coupling equations lead now to the following results: 

~,2(t) ~ - �88 -3/2 (2.17a) 

04(t) ~ o(t-~/2) (2.17b) 

O4(I)  ~ O (11/2) (2.17C) 

B( t) ~ �89 3~2(tier)'~2 (2.17d) 

The result for 02(t) is in agreement with the previously obtained exact 
results for the long time tail in the velocity autocorrelation function. (v 10). 
Denteneer and Ernst (14) have shown that O4(t)----- bt -3/2 and D4(t ) ~--- D 4 + 
O(t -1/2) for long times, where D 4 contains fluctuations up to ~(8/) 4} 
included, and b to ((6l) 6} included. 
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2.4. Isotropic Random Jump Rate Model 

The previous model included disorder in the rate for jumping between 
sites. An alternative form of disorder can be introduced (m'l~-~6) by assign- 
ing a random waiting time % to the nth site, and by letting the particle 
jump with equal probability from a given site to any of its nearest-neighbor 
sites. Thus the jump rate from site n in a given lattice direction is 
v. = (c%) -1 (where C is the coordination number of the lattice). For 
simplicity we restrict ourselves to d-dimensional hypercubic lattices with 
lattice spacing l where C = 2d. The isotropic jump rate model incorporates 
this kind of disorder via the following master equation: 

d 
/ 5  =_ '~, (E.~ + E ~  1 - 2 )v .P .  (2.18) 

Here E,~ f(n) = f (n  + %), where % (a = 1,2, . . . , d) is a set of orthogonal 
unit vectors along the lattice directions. (E.~ - 1 ) / l  and (1 - E ~ ' ) / l  are 
again the finite difference analogs of a derivative V~ in the c~ direction. The 
random variables r ,  are sampled from a site-independent distribution 
function with a mean r = ( r . )  and variance A T = ((% - r ) 2 ) / r  2. Haus et 
aL (15) have found the exact diffusion coefficient for this model as D 
= 1 2 / C ( r , )  = 12/2dr. The stationary solution of (2.18) is nonuniform, i.e., 
~.  = cr. .  We fix the constant by the normalization (1.3), so that c -1 
= N - l ~ , . r .  = ( % ) =  r Hence f in= r , / r .  The coarse-grained +(r ,X)  i s  
therefore 

1 ~ (%/r) (2.19) 
r  - Nr ,E  Vc(r) 

Hence 

and 

a+o = la~.~ ( r . / r )  (2.20) 
! !  

k~, = l a A  (2.21) 
Coarse graining of (2.18) is seen to lead to a form analogous to (1.1), i.e., 

8c(r, t ) / S t  = D V2[ c(r, t ) /~ ( r ,  X ) I  (2.22) 

where the second finite difference (2.18) is replaced by V 2. Equation (2.22) 
shows that K(r ,X)  = D is constant in this model as explained in Appendix 
A.4, and hence A K = 0. 

The physical reason why the Onsager coefficient is independent of the 
fluctuations in g. is the following. Suppose that 1 /v .  is larger than ( 1 / u , ) ;  
the jump rate per particle from site n is then less than the average but the 
steady state number of particles at site n is greater than average. The two 
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effects exactly cancel and the steady current, for a given driving force, is 
independent of u,. Combination of these results with (1.8) and (1.9) yields 
the following long time behavior: 

~,2( t) ~- o( t - ( s+  2) /2) 

~ 4 ( t )  ~ [do 2A,(4~rDt) - d/2 
(2.23) 

laDA 
D4(t) ~ D4 2Tr(d -- 2) (4~rDt)-~d-2)/2 

B4(t ) ~ B 2r 2) (4~rDt) -(a-2)/2 

For the special two-dimensional case the last two equations reduce to 

D4( t ) ~ B(  t) = (4~r)-ll2DA~log t (2.24) 

As was pointed out by Haus, Kehr, and Lyklema (15) the fact that there 
is no long time tail in ~2(t) is a rigorous result of the isotropy of the jump 
rates. Indeed, a simple argument shows that q~e(t) = D6+ (t), where 8+ (t) is 
a delta function on the positive time. interval. At each jump there is an 
equal probability of going in any of the possible lattice directions. Thus, 
after one jump, all memory of the direction of motion is lost and the only 
contribution to ~2(t) comes from the correlation of the velocity with itself 
during a single jump. For the case ~4(t), Machta(]~ obtained a result 
for one dimension using a microscopic renormalizafion group procedure. 
This result agrees with Eq. (2.24). For the d-dimensional case Denteneer 
and Ernst (17) have given a systematic expansion in powers of the fluctua- 
tion &, ,  and have calculated the long time behavior of the fourth moment 
of x displacement: 

2 4 
4--~ ( ~ 1  d ) ((Ax))~__ D2 + q54(t) (2.25) 

as follows from (1.5)-(1.7) with ~bz(t ) = D6+ (t) and ~4(t) as given in (2.23). 

3. LORENTZ MODELS 

3.1. Lorentz Gas with Nonoverlapping Scatterers 

In this section we apply the general theory to the Lorentz gas with 
nonoverlapping scatterers. (18) In this model a noninteracting point particle 
moves with constant speed in a two- or three-dimensional random array of 
scatterers which are hard disks or spheres, respectively. We suppose that 
the moving particle and a scatterer interact as hard disks or spheres and 
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that the radius of the scatterers is o. The intermediate scattering function is 
usually defined as an average over a grand canonical ensemble of static 
scatterers and one moving particle: 

F(k, t) = ( e i k ~ x ( t ) ) e  q 

Z N N 
N~=O ~ f dX d~drW(X)W(r,X)exp[ikAx(t)l 

= ( 3 . 1 )  

zN f dX~V d~dr W(X)W(r,X)  
N = 0  

Here the configuration X denotes the positions of the N scatterers and their 
number N; r and ,~ denote the position and velocity ([r = 1) of the moving 
particle; Z is the fugacity of the scatterers; their overlap function W(X) 
vanishes whenever two scatterers overlap and equals unity otherwise; 
W(r,X)--= ~(r,X) is the overlap function for the moving particle, which 
equals unity when r is outside all scatterers and vanishes when it is inside a 
scatterer; f~d = f de is a d-dimensional solid angle. 

In order to make contact with the function F(k, t) defined in (1.4), we 
consider the normalized stationary probability distribution, 

P(r,r = W(r,X)/[aa%(X)I (3.2) 

for finding a single moving particle at position r with velocity f in a frozen 
configuration X. The total free volume available to a moving particle is 

~o(X) = far  W(r, X ) (3.3) 

For the nonoverlapping Lorentz gas it equals 

qJo(X) = V -  Nvo (3.4) 

where v 0 is the volume of a single scatterer. 
The probability distribution for the nonoverlapping scatterers is de- 

scribed by the grand canonical ensemble for the hard-sphere fluid: 

p(X) = z N w ( X ) / N !  ~gr(Z) (3.5) 

where ~g~(Z) is the grand canonical partition function. Using the above 
equations we may rewrite (3.1) as 

F(k, t) = (~bo(X)(e ikAx< t) )X,1)/(+0( x )) (3.6) 

where ( �9 �9 �9 ) is an average over the scatterers, calculated with (3.5) and 

( ' '  " )x,, = f drd~,P(r,~,X). .. (3.7) 

is an equilibrium average over one moving particle in the frozen configura- 
tion X. Next, consider the explicit form of the double average appearing in 
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(1.4b), where a(ri) = exp[ik2~xi(t)] is used as a shorthand notation. Then 

a(ri)  = axo(x) a(ri)  (3.8) 
i = l  i =  X 

l E M! dri d~i W(ti '  X )  E a (ri) 

a(ri) (3.9a) 

i= 1 ~ M] dri d'~i W(ri' X ) 
M = 0  i 

where ~" is the fugacity of the moving particles, and where the denominator 
equals exp[~'~o(X)] by virtue of (3.3). With the help of (3.2), (3.3), and (3.7) 
we can reduce (3.9a) to 

a(r,. = (M)x(A (r))x, , = f~o(X)(a(r))x,1 (3,9b) 
t X 

Combination of (3.8) and (3.9) with (lAb) shows that both definitions (1.4) 
and (3.1) of the intermediate scattering function are identical. 

In order to apply the mode-coupling theory to the overlapping Lorentz 
gas we need to know the diffusion coefficient D of the moving particles as a 
function of the density of scatterers n = ( N ) / V  and specify the fluctuating 
quantities Ko(X ) and ~0(X). To do this we first note that an expression for 
D(n) is given by the time correlation function method, i.e., 

D(n)  = limz~0 [ d @ ~  f ~drdr W(r, X)~ .  Gz (r, ~ ,X)~ )  

= lim(d(~o(X)))-l(~bo(X)@ �9 G~(r,r162 ) (3.10) 
z----~O 

Here the resolvent Gz(r, r is the Laplace transform of S,(r, r which 
is the time displacement operator replacing the position and velocity (r, ~) 
of the moving particle by their value (r(t), r at a time t later. The density 
dependence of the diffusion coefficient is not completely known, but a few 
terms of its low-density expansion have been calculated for two and three 
dimensions, and it is found that D(n) is nonanalytic at n = 0. (25~ Further- 
more, D (n) has been calculated by means of computer-simulated molecular 
dynamics.(28-35) 

To specify K0(X ) we need only note the relation (1.11) as well as the 
time correlation expression (3.10) for D(n). They lead to the following 
result: 

Ko( X ) = limo @o( X )(~Gzr (3.11) 

with 
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Having specified all relevant quantities for the application of the general 
mode-coupling theory to the nonoverlapping Lorentz gas, we can begin to 
compute the explicit expressions for the various long time tail coefficients. 
We start with A~, defined in (1.10), and ~0(X), given in (3.4), using the 
average with weight function (3.5): 

vo <(8N)2> 
2xp- ~2 V 

The equilibrium fluctuation, 

_ _  _ V o ) Z s o ( n  ) ( 3 . 1 2 )  
1 - n %  

So(n ) = V- '<(8N)2)  = nk B T(On/Op) T (3.13) 

has been expressed in terms of the compressibility of a gas of hard disks or 
spheres with a temperature T (k 8 is Boltzmann's constant). We further 
calculated the average free volume 

<t~o(X)>-~ V~b = V(1 - nVo) (3.14) 

with the help of (3.4). 
Next, we turn to a consideration of A K, defined through (1.10) and 

(3.11) as 

A K = lim [ (6~ t~~ ] - V (3.15) 
z,z'-oo [ dV (DqJ) 2 ] 

This fluctuation in (~Gzr is of a form similar to Sinai's fluctuation, 
discussed by van Beijeren. (3) 

In order to evaluate this expression for A K we would need to carry out 
a kinetic theory analysis of the fluctuations in (#Gzr in the Lorentz gas, 
produced by collisions of a moving particle with the scatterers. The amount 
of calculation needed to carry out this program is extensive, and would be 
the subject of another paper. Hence, we will only present an approximate 
method for computing A K. 

One cause for fluctuation in Ko(X ) will certainly be fluctuations in the 
density of scatterers, but unlike in the one-dimensional case (discussed in 
Section 2.1) it will not account for all fluctuations in Ko(X ). This follows 
from the observation that it is the arrangement of scatterers in a coarse- 
graining cell and not just the number of scatterers in the cell which 
determines the transport of particles across the cell. 

We therefore split a fluctuation BAo(X ) of some quantity Ao(X ) [here 
either Ko(X ) or ~0(X)] into a part caused by fluctuations in the number of 
scatterers 8N, and a remainder or orthogonal part: 

6A o = (O<Ao)/O<N))SN + 8~A o (3.16) 
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where ( S N S •  0 and where the ( N )  derivative is taken at constant  
temperature.  The mean  square f luctuation yields then 5 

((8Ao)25 = (O(AoS /O(N) )2 ( (SN)25  + ( ( 8 ,  Ao) 2) (3.17) 

Therefore, taking Ao(X  ) equal to K0(X ) and combining (1.10), (3.11), and 
(3.17) we find 

= So(n ) + 1 (8_I_K o : 8•  (3.18) 
AK D~ dn V(O~)2d  

On the other hand,  the fluctuations in ~0(X) are entirely determined by 
fluctuations in N, as can be seen f rom (3.4). Thus, the remainder  in (3.17) 
does not  give a contr ibut ion to A+. 

In  view of the fact  that  a calculation of A~c is not  yet available, a 
simple approximat ion is to replace A x by the first term on the r ight-hand 
side of (3.18). This approximat ion  yields the following results for the long 
time behavior  of the time correlation functions, as given in (1.8): 

D 2 ( n dD nvo ) 2 
q ' 2 ( t ) ~  -2~z- -~  -S~  D dn 1 - nv o (4qrDt)-(a+2)/2 

n v  ~ )2 D 2 
q~4(t) ~ ( 1 - nv o --n-; S~ 

For  the Burnett  functions, given in (1.9), one has for d v ~ 2 

D4(t) ~'~ D 4 - 
[ nvo/(1 _ nvo)]2 DSo(n) 

2 ~ ( d -  2)n2(4~Dt) (a-2)/2 

B ( t ) ~ B  - 

F(n o nvo; ( Vo;l 
+ 2 DSo(n ) 

D dn 1 - nv o 1 - nv o 

4 ~ r ( d -  2)n2(4~rDt) (a- 2)/2 

(3.19) 

(3.20a) 

5 Note that we are dealing with fluctuations in a grand canonical ensemble. With the help of 
(3.16) one verifies immediately that ((8• equal the mean square fluctuation in 6Ao in a 
canonical ensemble, where the total number of particles N is kept fixed. With this interpreta- 
tion of the second term on the right-hand side of (3.17) the fluctuation formula (3.17) relates 
the fluctuation of some quantity A o in the grand canonical ensemble to the fluctuations of 
the same quantity A 0 in a canonical ensemble, and is simply a special case of a general 
formula, derived by Lebowitz, Percus, and Verier (19) relating fluctuation formulas in differ- 
ent equilibrium ensembles. 



428 Machta et al. 

and for d = 2 

D4(t)~ 1 - nv o 4vrn 2 

- + 2  - -  B(t)  ~-- D dn 1 nv o 
nv0 2]( ) 

1 - nvo ) DS~ 2 log 

(3.20b) 

t 

Since the coefficients of the long time tails in q54(t ) and D4(I ) contain only 
A+, they are expected to be exact. The coefficient of the tail in O2(t) and 
B(t), containing AK, are only approximate, since we have neglected the 
fluctuation 3~ K o in (3.18). One would expect that the latter approximation 
is only exact to the lowest order in the density, where the diffusing particle 
never collides with the same scatterer twice, so that (r162 will depend 
only on the mean free path in configuration X, i.e., on the local density. At 
higher density correlated collision sequences contribute to (~Gzf)x,1 in a 
way which depends on the microscopic arrangement of the scatterers and 
not just on the local density of scatterers and the second term on the 
left-hand side of (3.18) becomes important. 

3.2. Lorentz Gas with Overlapping Scatterers 

In the overlapping Lorentz gas (~8) the scatterers do not interact with 
each other, and hence two or more of them may form overlapping clusters. 
The distribution of scatterers is given by the grand canonical distribution 
for an ideal gas with W(X)  in (3.5) replaced by unity. This is the Poisson 
distribution 

o(x)- N! (3.21) 

where the fugacity Z equals the average density of scatterers n. For the 
overlapping case the situation is complicated by the fact that the diffusive 
medium is not simply connected; there exist, even at low scatterer density, 
trapping regions from which moving particles cannot escape and into which 
they cannot penetrate. In addition there exists in the thermodynamic limit 
exactly one "diffusive" region of infinite extent, provided the density of 
scatterers is smaller than the percolation density (2~ for the free volume. 

Since the mode-coupling theory assumes that the moving particles 
obey a coarse-grained diffusion equation it is applicable only to particles in 
the percolating part of the free volume. Thus, for the overlapping Lorentz 
gas q~ refers only to the fraction of free volume in the infinite cluster and 
the average in (1.4), leading to the long time tails (1.8) and (1.9), represents 
an average in which the moving particle is required to be on the infinite 
cluster. 
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On the other hand, the averages introduced in (3.1) and (3.8) and (3.9) 
of Subsection 3.1, as well as those computed in molecular dynamics 
simulations or kinetic theory, generally include both trapped and un- 
trapped particles. Let us denote these conventional averages ( . . . ) * .  To 
see the difference between the two averages, consider the intermediate 
scattering function F*(k, t), defined using the conventional averaging pro- 
cedure [see (3.1)], 

F*(k,  t) i~Ax(t~ . = (e  )eq (3.22) 

Since the displacement of the trapped particles is bounded, for sufficiently 
small k these particles simply contribute unity to the argument of the 
average in (3.22). Thus the relation between F and F* is, for small k, 

F*(k,  t) ~ ~F(k,  t) + (1 - ~) (3.23) 

where ~ is the probability in the ( �9 �9 �9 )* ensemble that the particle is on 
the infinite cluster. 

The physical situation corresponding to the mode-coupling average 
can be realized by freezing an equilibrium configuration of scatterers and 
feeding the moving particles in afterwards, so that the density of moving 
particles in the trapping regions remains equal to zero. The ensemble 
average in (Y9a) has to be modified by setting f equal to zero within the 
trapping regions. As a function of the density n of scatterers the average 
free volume fraction t) exhibits a phase transition at the percolation 
density. (23'24) In fact, ~b is the order parameter for this transition and 
vanishes above the percolation threshold. 

We are unable to calculate ~, ~, or A4 at arbitrary scatterer density. 
Thus, for the remainder of this subsection we will make the approximation 
that the particle can diffuse in and out of the trapping regions. (Since at 
least three scatterers are required for d = 2 to form a trapping region, we 
estimate the errors made to be of relative order n3. 6 In this approxiation 

= 1 and the average density is constant throughout the total free volume. 
Thus, the ensemble (3.9a) with a uniform f applies and ~b(r,X) is defined in 
the same way as for nonoverlapping Lorentz gas. 

Accordingly, we take ~p(r, X) to be the overlap function 

N 

~b(r, X )  = W(r, X )  = I I [  1 + f(r, Ri)] (3.24) 
i = 1  

where R i is the position of the ith scatterer and 

f(r,  R) = { - 01 forf~ trlr _- RIRI >< o~ (3.25) 
6 In  d d i m e n s i o n s  the  e r r o r  is o(na+l). 
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Thus 

) = f d r  W(r, X ) (3.26) %(x 

and Ko(X ) is given by (3.11). We calculate first the average free volume 
(~o(X)), in which we interchange the r integration in (3.8) and (3.9) with 
the 11 i int~egrations. The latter yield f d X  N W(r,X) = ( V -  �9 N, where v 0 is 
the volume of a scatterer; the former yields an additional factor V with the 
result 

@0(X) )  ~ V+ = e -"v~ (3.27) 

Next, we consider the fluctuations A+, defined through (3.24) and (1.10)- 
(1.12) as 

A r  2] (3.28) 

By first performing the integrations over the positions of the scatterers, 
using the relations 

(3.29) f d X  W ( r , X ) W ( r ' , X )  = [ V - 2v 0 + g(lr - r't)l N 

with 

g( l r  - r'l) = far f (r ,  R) f (r ' ,  R) 

we find for the fluctuation in the free volume 

a, = far  (e "g(r) - 1) 

(3.30) 

(3.31) 

Thus we can give an expression for 2x~ in terms of an integral that depends 
on the volume excluded by two overlapping scatterers. This can be evalu- 
ated numerically, and the results for hard disks are listed in Table I. One 
should keep in mind, however, that the free volume and its fluctuations, as 
calculated in (3.27) and (3.31), include not only the diffusive region but also 
the trapping regions. 

Although we have just obtained an expression for 2x+ (presumed to be 
correct to second order in the density), we can also write 2x+ in terms of 
fluctuations in the density, using (3.17) and (3.27): 

Aq, = nv 2 + ((8• V~b 2) (3.32) 

In view of the fact that the free volume fluctuations of the diffusive regions 
are not known, a simple and consistent approximation is to neglect the 
second term in (3.32). (The range of its validity will be discussed later on.) 
We, then, find for the fluctuations 

A~ ~ nv2o (3.33) 
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Table I. Free Volume Fluctuations of 
Hard Disks 

no 2 A,Vo J z~,(~rno2v0) I 

0.02 0.06 1.02 
0.03 0.10 1.02 
0.05 0.16 1.04 
0.10 0.34 1.08 
0.14 0.50 1.11 
0.18 0.65 1.14 
0.20 0.73 1.16 
0.24 0.91 1.20 
0.30 1.19 1.26 
0.32 1.28 1.28 
0.65 3.59 1.75 
0.74 4.39 1.90 

Next, we turn to a consideration of A K, defined in (3.15), which may also 
be written in the form (3.18) with the density fluctuations (3.13) for an ideal 
gas, So(n ) = n. Consistency requires again to neglect the second term in 
(3.18). Thus using (3.23) we obtain 

l dD 2 
A K ~  n( D dn v~ (3.34) 

With these approximations we find that the long time behavior of the 
correlation functions ~2(t) and q~4(t) is given by 

2 
O2(t) --  2~rD 2 ( n  Dn dDdn nv~ (4~rDt)-(a+2)/2 (3.35a) 

~b4(t ) ---~ nv~D 2(4~rDt) - ( a+2) /2  (3.35b) 

For the Burnett coefficient we find for dimensionality d 4:2  

(nv~ (4~rDt) <d-2~/2 (3.36a) 
O 4 ( t )  ~ 0 4  2qT(d - 2) / /  

t 2 1 nv o + 2(nv0) 2 
D dn 

B(t)  "-~ B - (4~rDt) (a- 2)/2 
4~r(d 2)n 

while for d = 2 

(3.36b) 

D 4 ~ (nvo)2(D/4~rn)log t (3.36c) 

B(t)~" D dn nv o +2(nv0) 2 (D/87rn)logt (3.36d) 
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In order to assess the range of validity of these results, it is useful to 
compare the value At) in (3.33), with the value given by (3.31). A density 
expansion of the latter yields 

Ag/= nv 2 + �89 f dr g2(r) + O(n 3) (3.37) 

where we have used the relation f drf(r, R ) = -  v 0. According to the 
arguments, presented above (3.24), the fluctuations (3.31) and (3.37) in the 
total free volume agree with the fluctuations in the volume of the diffusive 
region to terms of O(n 3) excluded. Hence, the result (3.33) is correct only to 
lowest order in the density. The estimate (3.34) for Ate is also correct only to 
lowest-order in the density, as discussed at the end of Subsection 3.1. One 
would therefore expect that the results given by (3.35) and (3.36) are correct 
only to lowest order in the density. The higher density corrections would 
come from using better expressions for A, and Ate. 

4. COMPARISON FOR THE LORENTZ GAS 

4.1. Systematic Kinetic Theory 

For the d-dimensional Lorentz gas at general densities no exact results 
are known. However, the Lorentz gas has been studied extensively by 
kinetic theory and by computer simulations. In the present section we want 
to compare the mode-coupling predictions with results obtained from these 
other methods, starting with the most fundamental one: kinetic theory. It is 
derived from the microscopic equations of motion, and therefore is in 
principle exact. The first prediction of a long time tail in the velocity 
autocorrelation function (VACF) for the Lorentz gas was made by Ernst 
and Weyland. (24) They used low-density kinetic theory, including the 
so-called ring terms to predict a long time behavior for d >~ 2: 

~(2~ = - (2 7rD2/n)(4~rDot ) -(d+ 2)/2 (4.1) 

where D o is the Lorentz-Boltzmann diffusion coefficient in d dimensions, (5) 
i,e.~ 

D O = IF( �89 + 3))/2voa-'~r(a-')/2]/n (4.2) 

The mode-coupling results (3.19) and (3.35a) agree with this in the limit 
n --~ 0 indeed. 

To compare results obtained from different methods, it is convenient 
to introduce the ratio a of the long tail in the VACF q,2(t) to its low-density 
value q~(2~ n (4.1), i.e., 

~2(t) ~ a~~ (4.3) 
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where the mode-coupling theory predicts 

a = (nAx/D2o)(Do/D)~d+2~/2 (4.4) 

In a systematic comparison one should consider the kinetic theory 
prediction for the first density correction to the coefficient a in (4.3). For 
the diffusion coefficient D systematic higher-order density corrections are 
available, calculated by van Leeuwen and Weyland, (25) but not for the long 
time tail. 

A determination of the long time tail from the mode-coupling theory 
would require an extensive kinetic analysis to calculate b K in (3.15). Such 
analysis remains to be carried out. An approximate result for A x, in which 
only density fluctuations are taken into account, was given in (3.19) for 
nonoverlapping scatterers and in (3.35) for overlapping scatterers, i.e., 

a(n~ - S~ ( n D dn 1 -nV~ o )2( D~ ) (d2)/2 
(4.5) 

( n  dD }2(~_~0)(d-2'/2 
a(~ = D dn nvo 

Note that both expressions approach 1 as n 4 0 ,  since D approaches its 
Boltzmann value (4.2). A careful examination of the linear density correc- 
tion shows that there are additional contributions from kinetic theory of 
O(n), not accounted for in the approximate result (4.5), but presumably 
present in A K. Numerical values are presented in Table II. For the Burnett 
correlation functions D4(t ) and dpa(t), introduced in (1.6) and (1.7), the 
situation is more satisfactory. The long time tails of these functions depend 
only on A~ and not on A K, as can be seen by inspection of (1.8) and (1.9). 
For the nonoverlapping Lorentz gas A, is given exactly by (3.12). For the 
overlapping Lorentz gas A~ can be calculated exactly to terms of relative 
order n 2 included, shown in (3.37) and Table I. The Burnett coefficient 
B(t), defined in (1.6), involves both Aq, and A K, where Z~K has not yet been 

Table II. Amplitude of the Long Time Tall In the VACF for the 
Two-Dimensional Lorentz Gas ~ 

i i 

;'1o 2 dlogD/dlogn a e o m p  a M C  a G L  Y a K M  

0.03 (O) 1.13 __+ 0.05 2.7 + 0.6 1.5 __+ 0.1 1.08 1.20 
0.05 (O) 1.18 __+ 0.05 3.7 __+ 1 1.8 __+ 0.1 1.15 1.34 
0.05 (N) 1.4 2 1.2 

i i i 

aThe coefficient a measures the strength of the long time tail in the VACF for the 
two-dimensional Lorentz gas. Compared are computer results (acomp) with mode-coupling 
results (aMc) and other results (aGLv, aKM), defined in (4.9) and (4.10), respectively. Units 
are chosen so that a = 1 for the low-density result. (O) refers to overlapping and (N) to 
nonoverlapping. The logarithmic derivative of the diffusion coefficient is also given. 



434 Machta el aL 

Table III. Long Time Tail in the Modified 
Burnett Coefficient a 

no 2 D I D  0 bcomp bMc 

0.03 (0) 0.88 _+ 0.01 3.9 --+ 1.5 1.3 _+ 0.1 
0.05 (0) 0.81 _+ 0.01 4.2 --+ 1.5 1.5 + 0.1 

q Comparison of mode-coupling results with the computer results 
for the coefficient, b, of the long time tail of the correlation 
function O~('r) whose integral is the modified Burnett coefficient, 
B(t). The ratio of the diffusion coefficient to its Boltzman value 
is also given. 

calculated exactly. Its long time behavior has been calculated by Ernst and 
van Beijeren, (5) using low-density kinetic theory, including the ring terms. 
Their low-density result 

d/~ (~ 
dt -- ( 2 ~ )  2D~(4~rD~ (4.6) 

is in agreement with the mode-coupling results (3.19), (3.20) and (3.35), 
(3.36) for the Lorentz gas with nonoverlapping and overlapping scatterers 
in the limit as n ~ 0. 

At general densities the mode-coupling results may be represented as 

dB(t) dB(~ (4.7) 
dt ~ b dt 

In the same approximation as used in (4.5), the ratio b follows for the 
nonoverlapping and overlapping case, respectively, from (3.20) and (3.36) 
as  

(4.8) 

b(~ D dn nvo + 2(nv0)2 D 2-d/2 

Numerical estimates of b in the two-dimensional Lorentz gas are given in 
Table III. 

4.2. Approximate Kinetic Theories 

The behavior of correlation functions in the Lorentz gas with overlap- 
ping scatterers at general density has also been studied in a series of papers 
by G6tze et al. (26~ Their method starts from the Zwanzig-Mori projection 
operator technique to obtain an equation of motion for the microscopic 
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phase space density of the moving particle. By means of a number of 
approximations a closed equation for the memory function is then ob- 
tained. From this equation the behavior of the correlation functions can be 
determined in the limit of large t and small k. Their result for the long time 
tail of the velocity correlation function q,2(t) for arbitrary dimensionality d 
is of the form (4.3), but with a given by 

(or) ( D '2[Do)a~2 
acLY = -~o + nv~ ~ --ff (4.9) 

Numerical estimates of a in (4.9) for the two-dimensional overlapping 
Lorentz gas are shown in Table II. 

Excluded volume corrections, present in (4.5), have been taken into 
account by Keyes and Mercer, (27) who quote for arbitrary dimensionality 

ar~ M = (1 + nvo) 2 (4.10) 

(for numerical values see Table II). 

4.3. C o m p u t e r  S imulat ions 

There are several computer simulations of time correlation functions 
over a long time range in the two-dimensional Lorentz gas. In the case of 
overlapping scatterers the first simulations for the VACF have been per- 
formed by Bruin. (28~ More recently Alder and Alley (29-33~ have repeated 
these simulations with much greater precision, for larger systems over a 
larger range of times and scatterer densities. In addition they have investi- 
gated the super-Burnett correlation functions, and performed simulation for 
Lorentz models with stochastic scattering laws. For the Lorentz gas with 
nonoverlapping hard disks Tjon and Lewis (34~ have computed the VACF. 

In order to compare our mode-coupling results with those from com- 
puter simulations it is convenient to represent the correlation functions in 
dimensionless units. The dimensionless density is n* = no 2 and the dimen- 
sionless time is ~-= t i t  o = 2n*v t /o ,  where t o = 1/2nov is the mean free 
between collisions. Our long time results (4.3) for the VACF in the 
two-dimensional Lorentz gas may then be represented as 

OD (.r) = q~2(t)/4~2(O ) ~ - n* a/~r.r 2 (4.11) 

where ~2(0)= �89 v 2 is the initial value, and a is given in (4.4). This result 
follows directly from (4.1) and (4.2), where a--~l as n---~0. In order to 
calculate a at general densities one needs D as a function of n. Unfortu- 
nately only a few terms in the nonanalytic expansion of D in powers of n 
and logn have been calculated. (2s~ For the range of densities at which the 
computer simulations were performed, several more terms would be 
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needed. Therefore we used Bruin's computer  values for the diffusion 
coefficient to calculate the derivative d D / d n .  Bruin gives D at intervals of 
0.01 in n*, f rom which we estimated derivatives by taking differences. At  
the densities, where Alder  and Alley have computed  D, their results are in 
close agreement  with those of Bruin. 

For  the nonover lapping Lorentz  gas we used Lewis' curve fitting (35) to 
his published data  to evaluate the derivative of the diffusion coefficient 
with respect to n. We  used Ree and Hoover ' s  (36) equat ion of state for hard  
disks to calculate the isothermal compressibility ( S p / 3 n ) r .  In  Table II  the 
approximate  results (4.8) for both the nonover lapping and the overlapping 
Lorentz  gas are presented and compared  with the computer  results of Alder  
and Alley, and  of Tjon and Lewis, respectively, at densities n* = 0.03 and 
n* = 0.05. At  these densities the computer  results take the form (4.11) at 
long times, and  the coefficient can be compared  to the mode-coupl ing 
prediction. The  agreement  is in general rather poor  as can be seen f rom 
Fig. 1 and  Table II. However,  Alder and Alley (2m have plotted the 
computer  simulation values of a in (4.11) as a function of  n, and  extrapo- 
lated this funct ion linearly to zero density. The extrapolated value of a is 
very close to unity, in good agreement  with the kinetic theory calculations 
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Fig. 1. Computer results (29'3~ for the velocity autocorrelation function C(~) = -(~rzz/mr 2) 
[pD(z)-exp(-4~/3)] at a density no 2 =0.05 as a function of the dimensionless time 
= 2novt, where C(z ) -  a for large r on account of (4.11). Here 0o(~-) is defined in (4.11) and 
exp(-4~'/3) represents its behavior as calculated from the Boltzmann equation. The dotted 
line is an evaluation of the approximate mode-coupling prediction for the long time tail; the 
solid line is the arithmetic mean of the points between ~- = 10 and r = 20 collision times. 
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for low densities. However, the coefficient a, obtained from computer 
simulations, increases much faster with increasing density than predicted 
by the approximate results for A x and iX,. Alder and Alley have also 
computed the time dependence of the Burnett function B(t)  for the 
overlapping Lorentz gas. (3~ They expressed this function in dimensionless 
variables by introducing 7 

PB ('0 = D o  2 d B ( t ) / d t  (4.12) 

In the mode-coupling theory for the overlapping case this function assumes 
for long times the form 

OB (~) ~" 4n*b /3~r  (4.13) 

as follows from (4.8) and (4.9). Numerical values of b are given in Table II, 
and compared with computer results. A similar extrapolation to zero 
density of the computer values for b at n* = 0.03 and n * =  0.05 is not 
inconsistent with the theoretical value 1, but the uncertainties in the data 
are so large that no stronger conclusions can be drawn. 

5. C O N C L U S I O N  

The mode-coupling theory predicts long time effects in diffusion 
phenomena in random media. We have investigated in particular the 
VACF eo2(t ) and the four-point velocity correlation function ~,4(t), related 
to the super-Burnett coefficient, for several models. The strength of the long 
time tails in these correlation functions is proportional to the variance A K 
of the fluctuations in the local coefficient K(r,X). Randomness in the 
scattering medium is necessary for the appearance of the long time effects 
discussed here. For instance, if the random lattice in the models of Sections 
2.1 and 2.2 becomes strictly periodic, i.e., the interval distributions become 
sharp, the long time effects disappear as in ordinary random walks on 
regular lattices. In the random walk models of Sections 2.3 and 2.4 on 
regular lattices the strict periodicity is broken since the jump rates vary 
stochastically per lattice bond or site. If the jump rate distribution becomes 
sharp and site independent, strict periodicity is restored and the long time 
tails disappear. In Section 2 we were able to verify that the mode-coupling 
theory is exact for several one-dimensional models and one d-dimensional 
hopping model. For these systems we found a single variable which entirely 
determines the fluctuations in A K and A~. For the stochastic Lorentz gases 
this variable is the step length, and for the random hopping models it is the 
waiting time, as has been shown in Appendix A. 1. 

7 In the literature (3~ pe(~-) has also been defined as pB (~-) = Dd-2(d/dt)2[tB(t)]. As B(t)~logt 
for long times, the dominant behavior for both functions is the same. 
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For the deterministic Lorentz gases the situation is much more compli- 
cated because fluctuations in 2x K are not controlled by fluctuations in any 
simple variable such as density. In Section 3 we made an approximate 
calculation of the mode-coupling coefficients of Section 1 by finding the 
contribution of density fluctuations to h K and h~. Unfortunately, the 
results of this approximation are in poor agreement with the computer 
simulations except at the lowest densities. This fact leads us to believe that 
there are important contributions to the full expression for A K, given in 
(3.15), from fluctuations which are more complicated than density fluctua- 
tions, perhaps fluctuations in the arrangement of the scatterers. Because of 
the simple geometry of one dimension these arrangement fluctuations do 
not contribute to A~ or Ar for the models discussed in Section 2. In order to 
test the formal validity of the mode-coupling theory for the Lorentz gas and 
related higher-dimensional models it will be necessary to develop a kinetic 
theory of similar microscopic methods to evaluate the expression in (3.15). 

It is interesting to contrast the mode-coupling theory presented here 
for disordered diffusive systems with the mode-coupling theory for long 
time tails in fluids. Although the hydrodynamic equations are more compli- 
cated than the fluctuating diffusion equation, the resulting amplitudes for 
the leading long time tails are much easier to evaluate for fluids. The reason 
is that, for fluids, the amplitudes contain only thermodynamic fluctuations 
which can be reduced to specific heats and compressibilities. For disor- 
dered media the amplitudes depend on fluctuations in nonthermodynamic 
quantities. 
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NOTE ADDED IN PROOF 

We have been informed that P. Visscher has recently obtained similar 
results by an independent method. (37) 

APPENDIX 

A.1. One-Dimensional Stochastic Lorentz Model 

We first consider the one-dimensional stochastic Lorentz model de- 
scribed in Section 2.1, and compute the coarse-grained Onsager coefficient 
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K(r ,X) .  To do this we imagine a current-carrying steady state and use the 
basic property of such one-dimensional systems, namely, that the current 
across each scatterer has the same value, say, j .  To compute K ( r , X )  we 
first relate j to the microscopic concentration of particles to the left and 
right of each scatterer, and then relate j to K. 

We focus our attention on a single scatterer and define c R and e L as 
the concentration of moving particles immediately to the right and to the 
left of the scatterer, respectively. Of the c R particles c(R +) will be moving to 
the right and c(R -) will be moving to the left. Similarly, e L is composed of 
c (+) particles moving to the right and c ( - )  moving to the left. The cur ren t j  
across a scatterer can then be written in three equivalent ways as 

j = v(c ( + ) -  c ( ) )  = v(c [ + ) -  c [-))  (A.la) 

= v ( l  - f l ) ( e  ( + ) -  e ( - ) )  ( a . l b )  

Here v and p are defined in Section 2.1. The expressions in (A.la) are 
simply the microscopic expressions for the current in terms of the concen- 
tration of the moving particles, while (A.lb) expresses the microscopic 
dynamics of the moving particles, i.e., c (+) = ( 1 - p ) c  ( - )  +pc(z +). If we 
combine these equations with the relations c R --c(R+)+ c(R -) and c L 
= c (+) + c(z -) we obtain 

where 

j = [ v ( 1 - p ) / 2 p ] h c  (A.2a) 

Since in the steady state the current j has the same value across each 
scatterer, it follows from (A.2a) that the concentration jump Ac is the same 
across each scatterer also. 

Next, we use (A.2a) to relate j to the coarse-grained concentration 
gradient at position r. To do this we consider the number Nc(r ) of scatterers 
in the coarse-graining cell of length Vc, centered around r. The total change 
in the concentration of moving particles across a coarse-graining cell is then 
equal to the number of scatterers in the cell, multiplied by the change in 
concentration across one scatterer. Then, if we divide this value by the 
length Vc, we obtain the coarse-grained concentration gradient, i.e., 

Vc(r)  = - A c U , ( r ) / V  c = - Ac / l ( r ,  X )  (a .3)  

and we have introduced the coarse-grained local volume per scatterer 

V J N , ( r )  = l ( r , X )  = 1 / n ( r , X )  (a .4)  

Combination of (A.2a) and (A.3) yield a coarse-grained description for the 
current in the steady state 

j ( r )  = - [v(1 - p ) / 2 p ] l ( r , X ) V c ( r )  (a . s )  

AC = c L -- c R (A.2b) 



440 Machta et ai, 

By comparing (A.4) with the expression for the current in (1.1b), and using 
the relation + = 1 for this model, we obtain 

K ( r , X )  = [v(1 - p ) / 2 p ] l ( r , X )  (A.61 

A.2. One.Dimensional Waiting Time Lorentz Model 

Next we consider the one-dimensional waiting time Lorentz model of 
Section 2.2. and compute the coarse-grained Onsager coefficient, using the 
symmetric model with p = 1/2 as an example. This is done again by 
considering current-carrying steady states, which can be set up by introduc- 
ing appropriate boundary conditions with emitting and absorbing walls, as 
described by van Beijeren. (3) 

For this model the probability Pn(t) of finding a particle at site n 
satisfies O) a master equation of the form (2.13) with a fixed jump rate 
v, = 1/2~-. This equation allows a solution with a steady current 

j = (1/2~-) ~P  = const (1.7) 

where A p -  p~+] - p~. 
In order to relate the coarse-grained P(r) to the coarse-grained concen- 

tration c(r) we observe that V,.c(r)= Nc(r)P(r ). In addition we have for 
this model (see Section 2.2) an equilibrium solution of the form +(r,X) 
= n(r ,X)  = 1 / l ( r ,X )  = Nc( r ) /V  c, Hence we have the relation 

A p = 2x( c / ~ ) = const 

= - l ( r , X ) V ( c / + )  (1.8) 

By combining (A.7) and (A.8) and comparing with (1.1) we obtain for the 
coarse-grained Onsager coefficient 

K ( r , X )  = l (r ,X) /Z 'r  (1.9) 

For the asymmetric waiting time Lorentz model (where p r 1/2) we will 
use the following relation without further arguments: 

K(r, X) = [(1 - p)/2p'rll(r,  X )  (A.10) 

A.3. One-Dimensional Random Barrier Model 

The arguments in this section closely parallel those in the previous 
subsection. The steady-state current through the bond between the sites n 
and (n + 1) is according to (2.13) 

j = v,(P,+, - P , )  = const (A.I 1) 
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The coarse graining is performed by dividing the system into cells of a 
given size V c = Ncl, where ! is the lattice distance and N C the number of 
particles in a cell. Since the coarse-grained value of P/I  equals the 
concentration of moving particles, we compute from (A.11) the jump, 
Ac(r), across the coarse-graining cell Vc(r), centered at r, i.e., 

Ac( r )=  ~ ( P . + , - P . ) / l = ( j / 1 )  ~ (1/v.) (A.12) 
n E Vc(r ) n @ V~(r) 

The coarse-grained gradient Vc(r )=  Ac(r) /Nj  is obtained by dividing 
(A.12) by the length Ncl of the coarse-graining cell. 

Since ~(r ,X) = 1 for this model (see Section 2.3) we can deduce from 
(1.1) that the coarse-grained Onsager coefficient K(r, X) is given by 

12/K(r,X) = ,c(r,X) = Nc -1 ~ 1 (A.13) 
n @ Vc(r) Vn 

where r(r, X) is the local waiting time. 
Note that the arguments used in (A.12) for calculating the gradient in 

c(r) can only be applied in one-dimensional systems. 

A.4. d-Dimensional Jump Rate Model 

The steady-state solutions of the master equation (2.18) are given by 

v.P n = a + b - n  (A.14) 

where a and b are constants, and n = (n~, n # , . . .  ) is a lattice vector. Hence 
the jump A~ (v.P.) across a bond in the a direction is given by the constant 
b~ =/j~, where j~ is the a component of the steady state current density. 
The coarse-grained value of v.P.l-a is according to (2.14) given by Dc/~,, 
so that 

L= 71/\(v.pJ-d)=T~TD c=DV_C~ (A.15) 

Hence, the coarse-grained Onsager coefficient, 

K(r,X) = D (A.16) 

is not fluctuating. 
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