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Synopsis 

An exposition of the renormalization-group equations for the hierarchical model is given. 
Attention is drawn to some properties of the spin distribution functions which are conserved 
under the action of the renormalization group. 

1. Introduction. In the framework of  the recent theories of  the critical point a 
universality class is associated with a fixed point of  a renormalization transforma- 
tion (the correspondence being such that many fixed points and many renormaliza- 
tion transformations may give rise to the same universality class). The problem is 
to find, given a model and a renormalization transformation, which is the fixed 
point associated with its critical behaviour. 

In this note we show with some examples how one might be helped in this 
search by some "conservation laws". We shall study only the hierarchical models 
where a simple renormalization group can be considered. We shall show that the 
fixed points associated with certain models will have to obey restrictions corre- 
sponding to the three "conservation laws" that we shall find. 

Most of  this paper, in order to provide a motivation to the remarks of  section 5, 
deals with an exposition of  known results and ideas about  recursion formulas and 
the e-expansion. The reader is supposed to have some familiarity with the basic 
ideas and assumptions of  Wilson's theory of  the critical point (which is not de- 
scribed here). 

2. The hierarchical model  Consider a 1-dimensional lattice Z + = (1, 2 . . . .  ) 
and think of  it as built up with adjacent blocks of  2 p sites (p = 0, 1 . . . .  ). The rth 
block of 2 p sites will be denoted by (r, p). So 

(r ,p)  = { ( r -  1) 2 p +  1 , ( r -  1) 2 p +  2 . . . .  ,r2P}. (2.1) 
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On each site i of the lattice sits a spin ~r~ ~ ( -  ~ ,  ~ ) .  We define 

Mr,p ~ L (Ii, 
iE(r,p) 

S,,p = 2 -p/2 ( M g _ r - l , p - 1  - -  M2,,p-l)  

and then define the hamiltonian for a system of  2 L spins as 1-3) 

L 2 L-p 

HL((71, . . . ,  O'2z ) ----- ~ B p  2 S-,2,p , 
p = l  m = l  

where the couplings Bp are given by 

B, = ½B (2 ~ -~ )p -1  

(2.2)  

(2.3) 

(2.4) 

(2.5) 

with B > 0 and 1 < o~ < 2. This interaction is a nontranslationally invariant ver- 
sion of the long-range one-dimensional Ising model with potential ~(R) = JR-~' l). 

A "model"  is defined by the sequence { Bp} ~o and by the "free spin distribution" 
H(°)(a) which describes the isolated spins when B = 0. So the partition function 
of the model ({Bp}~, H C°)) is 

2 L 

ZL ({Bp}~, H (°)) = j ' e  - ¢ n L ( %  . . . . . .  2L) 1-I H(°)(a3 do',. (2.6) 
i = t  

The model ({Bp}~ °,//(o)) with lI(°)(a) = ½ [6 (a + l) + 6 (a - l)] will be called 
the Ising hierarchical model. 

We shall always assume that, at least in the interesting region of/3 the above 
integral is finite and In Z behaves extensively when L -~ ~ [this means that/7(o)(a) 
is not slowly decreasing at infinity]. 

We define the block spin variable 

v = M1,L2 - ~ L ,  (2.7) 

and call H (z) its probability distribution with respect to the Boltzmann-Gibbs 
distribution associated with IlL. In other words 

• I-L =i I1(°)(a,) da,  (2 MI.L - v) (2.8) H(L)O, ) = f e  -on' /~* . . . . . .  ~ )  6 - ~ ' ~  2~ 
ZL ({B.}~,/7 '°)) 

Then the following renormalization transformation holds: 

z L  ( { B A , , / 7 ( o , )  = ~ 2 L - " 7  ~ / / ( R , ) ,  mR "~L-R ({Bo}a, (2.9) 

where 

AR = (2~/2)2"-' ~ K~-H(°)(v) dv (2.10) 
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and, if ~ = 2 ½~- ~, the operator  K o is given by 

• K a .  H(v)" = S H  (¢r + y)  H (¢v - y )  e -an'~ dy. (2.11) 

The reader can check the above formulae by a direct calculation or  by extracting 

them out o f  refs. 1-3 where they are proven in detail (with a different notation).  

Fur thermore  it is also true that  

H(R~(v) = K~ R) • H(O)(v)/normalisation, (2.12) 

which is the Baker recursion formula  (see ref. 2). 

3. Fixed po&t and tangent space. We now assume that  for fl = tic, a model 
({Bp}~, H t°)) has a phase transition and that  fur thermore  the limit 

K L 
lim P~" Ht°)(v) = H(°~)(v), (3.1) 

. n ° ( 0 )  

exists in some sense. Then H ® should be a "fixed poin t"  for K~o, i.e., Kpo. H (°°~ 
= 2 H  (°~) for some 2. We, furthermore,  assume that, if/3 close to/3c, the ratio 

- K ~ - ~ / ~  = exp [~(,)], (3.2) 

is for some value L = Lp_po very close to one in the sense that  the function 6 
belongs to a ne ighbourhood of  the origin o f  some linear space o f  functions which 
we denote by OK*. 

I f  the above assumptions are indeed realized (which may be false or  difficult to 
verify for a given model) Wilson's  theory provides a description o f  the neighbour- 

hood  of  the critical point  in terms o f H  (®) and o f  the linearization Ta of  the opera- 
tor Ka around H (~°) on the space dK: 

Kp • H (°~) exp (6) = 2 H  (~°) exp [Ta6 + ¢(62)]. (3.3) 

In the case o f  an ordinary critical point  the opera tor  T o should have, on OK, a 
(discrete) spectrum with all the nonconstant  eigenfunctions but  one having eigen- 
values less than l*). 

* The reader will notice that the assumptions are not formulated in a way which would 
satisfy a mathematician. Actually the exact meaning to be given to them is not quite under- 
stood in general. Essentially one means that the assumptions should be made precise to allow 
the calculations below. An example of a set of sufficient assumptions is in the paper by Bleker 
and Sinaia). 
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A universality class in the frame of  the hierarchical models with a given value 
of the parameter  ~, is associated with the largest eigenvalue 2~ of  Tpo (with non- 
constant eigenfunction) i.e. all the above models which at fl~ give rise to a couple 
( H  (°~, 0K) such that the operator Kpo linearized around H (~) on OK has the same 
value of)`~, have the same critical exponents. 

For instance there is a trivial fixed point H(~)0, ) - 1. I f  8K is taken to be the 
space of  the square-integrable functions (with respect to a suitable weight) the 
spectrum of Tp can be easily studied; it is discrete and the eigenvalues relative to 
nonconstant eigenfunctions are (Bleker and Sinai3)): 

)-~ = 2~ "2, )-2 = 2~ "4, )-3 = 2~ - 6  . . . . .  (3.4) 

In particular we see that 2~ > )-2 > )-3 and )-2 < 1 if 1 < a < ~. 

4. The e-expansion around a -= I .  The above discussion makes clear the im- 
portance of the correct determination of H (~°) and 0K: in fact the spectrum may 
dramatically depend on their choice. Of  great importance is the fact that it has 
been possible to find some models for which the above assumptions and Wilson's 
theory could be rigorously verified; (these examples have a H (°) which is rather 
complicated and 1 < o¢ < ~; see ref. 3). 

So far this check of the theory has been possible only for a class of  models 
whose critical point is described by the couple ( H  (~), OK) introduced as an ex- 
ample at the end of the last section ("gaussian" fixed point). 

In the general case, however, little can be said; even if the above assumptions 
about the existence of H ~®) and OK are accepted for a certain model, it is very 
hard to judge which is the appropriate couple (H  ~®~, 8K). The trouble is that there 
are, a priori, many fixed points and many tangent spaces that can be associated 
with the same renormalization transformation Kp. 

For instance there is evidence for a fixed point of  Kp of the form 

H¢°°)(v) = exp [at 2 - by 4 + ¢~ (e3'1/6)], (4.1) 

where e = 2~ 4 - 1 and a, b are determined by e. The evidence is the following: 
use the r.h.s, of  (4.1) as an "ansatz"  and apply K~ to it assuming a, b of  order e. 
A simple calculation leads to a H '  = KaH ~°~) of the same form but with constants 
a' and b' given by 

a'  2~2a 6~2b 12~2ab 36~-2b2 = + _ _  + ¢ ( ~ 3 ) ,  
~ B  ( ~ B )  ~ (~B)  ~ 

b' = 2~4b 36~4b2 -t- •(e3). 
(~B)  2 

(4.2) 
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Setting a '  = a, b'  = b and observing tha t  for  e small, 2~ 4 - 1 is p ropor t iona l  to e, 

one finds the fixed-point  values 

6~ 2 
a(~) = b(~) + ~(e~) ,  

(2¢ ~ - 1) t~ 

b(e) = fl____~2 ( 2J~ _ 1) + d~(e2). 
36~ "4 

(4.3) 

(Another  solution is, o f  course, a = b = 0.) So the calculation suggests tha t  near  
e = 0 there is ano ther  fixed point  which is asymptot ical ly,  as e ~ 0, given by the 
above  formula.  

I f  the space OK is taken to be a space which contains v 2, v 4 . . . .  the above cal- 
culations provide  evidence that  the eigenvalues o f  the linearized opera to r  Tp are 

given by:  

2 ,  ~2 = 2 az(1 + ½e) + dJ(e2), 2~ 4 = 1 + e, . . . ,  (4.5) 

i f  one linearizes a round  H(°°)(~) - 1 (i.e., a = b = 0), or  

2 ~ (1 + ~/6) + ¢(t2) ,  1 - t + s( t2) ,  . . . ,  (4.6) 

i f  one linearizes a round  H(°~)0, ) = exp [a(e) ~,2 _ b(e) ~4 ...]. I f  one assumes tha t  
OK does not  contain v 4 then the second eigenvalue is missing in bo th  cases. 

The  reader  will no doubt  notice that  we are t reat ing the spect rum o f  Ta and the 
linear space OK in a ra ther  naive way (for instance the s ta tement  tha t  ~,4 does not  
belong to t3Kis not  very clear since 0 K h a s  not  a well-defined topology).  The  above  
a rguments  have, so far, never been made  r igorous and the reader  should consider 
t hem as heuristic considerations.  

The  above  examples  explicitly suggest the dependence o f  the spectrum, and 
hence o f  the theory  o f  the critical point  o f  a model ,  on the couple ( H  (~), OK). So 
far  the only suggestions abou t  the choice o f  (1] ~°°), OK) for  a given model  have 
come out  o f  per tu rba t ion  theory.  Fo r  instance in the Ising hierarchical model  the 
per turba t ion- theory  suggestion is to use H ~ )  o f  the fo rm exp (a~ 2 - / n ,  4) (for v 
small) and then to linearize for  6(~) = a'~, 2 - b'~ 4 (for ~, small). This immedia te ly  
leads to the result tha t  the critical-point behavlour  must  be described by the trivial 
fixed point  i f  o¢ < ~- and by the fixed point  discussed above for  ~ > ~. This fol- 
lows f rom the fact that  the spectral  propert ies  required by Wilson's  theory  are 
not  verified for  o~ > ~ if Kp is l inearized a round  the trivial fixed point ,  whereas  
these propert ies  may  be satisfied if Kp is linearized a round  the other  fixed point  
(and vice versa for  ~ < ~). 
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However from a mathematical point of  view the problem seems to be rather 
difficult and it is not even known whether "nontrivial" fixed points really exist 
nor is it understood any better why the "ansatz" H ~ )  = exp (av z - by 4) should 
be the right choice for the case of  the Ising model. 

5. The conservation laws. The above qualitative considerations are meant as a 
justification of the interest that should be attached to information which could a 
priori  exclude certain possible ansatzes f o r / / ~  and OK in the investigation of 
the critical point of  a given model. It  is in this context that we point out the fol- 
lowing "conservation laws". 

We assume that the limit which def ines/7 ~ in section 3 exists weakly (i.e. 

~ H '~ ) t v~  dv = limL~ ~ ~ K L • H~°)(v)/K~o • H'° ) (O)  dv for all vt,  v2). v 1 \ / fie 

l.) Conservation of the bells: if H (°) is a piecewise smooth even function which 
is monotonic for v >i 0 (i.e. i f H  (°) is "bell shaped") then this property is shared by 
K~ • H ~°~ . The limit H (~) is then also bell shaped (but no longer necessarily piece- 
wise smoooth). 

ll) Conservation of the Fourier type: if H ~°) is a positive normalized measure 
with positive Fourier transform, then K~ • H (°) is of  the same type. I f  H (~) is also 
normalizable then H ~ )  is also of  positive Fourier type. 

III)  Conservation of the "Griffiths type":  we say that H(°~(v) is of  "Griffiths 
type" if 

) 
t l 4 :  + 1 i 

for Ji , j /> O, 2 > O, or also i f H  ¢°~ is a weak limit of  a sequence of such functionsS). 
The property of  being of Griffiths type is then conserved under the action of K~ 
for/~ such that 

0 < fiB~22 <_ 4Ji.s (1 - 1/4~2). (5.2) 

[In case l l(°~(v) is obtained from a sequence this relation should hold term by 
term.] Also H (~) is then of Griffiths type. 

In the case of the Ising model there is no condition for this last conservation 
law since H ~°) is obtained from only one spin t. 

There is another way of choosing the initial "interactions for a hierarchical 
model (that of  Dyson and Bleker-SinaiL3)) which leads to a different renormaliza- 
tion-group equation, namely: 

g ,  . [I(v)  = e ~°~2 . [ I I  (~v + y)  H (~'v - y) dy. (5.3) 

The operator /~p conserves the Griffiths type for all temperatures; however, the 
conservation laws I and I I  are no longer true (but they hold modulo,  a gaussian 
factor, as I I I  does in the case we have considered in this paper). 

A proof  of  the above "laws" is sketched in the appendix. 
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6. Concluding remarks. The fixed point which arises in the e-expansion is 
neither bell shaped nor of  positive Fourier type. We can then use the conservation 
laws I and I I  to conclude that the nontrivlal fixed point discussed above cannot 
be relevant for the discussion of  the critical point of  a model with aH ~°~ which is 
either bell shaped or of  positive Fourier type. This leads to the conjecture that 
such models, if describable in terms of Wilson's theory, will be associated with 
the trivial fixed point H(~°~(~) - 1 and described by the eigenvalue 2 = 2~ 2 even 
for ~ > 3 (at least as long as ~-~} is small). 

Of  course there might be other fixed points compatible with bell-shape or posi- 
tive Fourier type which are "nontrivial".  They may be relevant to the critical 
point of some model or may become relevant for ~ large enough. The nontrivial 
fixed point found with the e-expansion is compatible with a H ~°~ of  Griffiths type. 
Hence, as perturbation theory suggests, it is a priori possible to encounter it in 
the theory of  the Ising hierarchical model. 

APPENDIX 

In this appendix we sketch a proof  of  the conservation laws. Consider first the 
conservation of the bell shape. We recall the definition: 

Kp .II(v) = f H(~v + y)II(~v - y )e  -pBy2 dy. (A.1) 

Suppose now H(v) is even, and monotonic for v > 0 (i.e. "bell shaped"). The 
definition of Ka implies that Ka • H(v) is even. A few simple substitutions lead to 
the formula [supposing H(~) is smooth] 

d 
- -  Ka.  HO') 
dv 

oo 

= (e -a"y~-a"J~2 [e2a"c~Y H (2~'v- y ) -  e -2p"''y . (2~v + y)] ~ H(y)dy. 
, /  

o (A.2) 

The fact that H is bell shaped implies that the factor inside the braces is positive 
(if v > 0) and d/dy H(y) < O. Hence d/dr [Ka • H(v)] is negative for v > 0 and 
KaH is bell shaped. When H is only piecewise smooth and monotonic for v > 0, 
one uses the fact that H can then be weakly approximated by smooth bell-shaped 
functions. The fact that also the limiting function H ~°~) has to be symmetric and 
monotonic for v > 0 is evident. 

Secondly, the Fourier type: l e t /~ (K)  be the Fourier transform of H(v); it is 
then easy to check that 

Kp.H(K)  = - ~  - ~  + y - -~- -  y dy, (A.3) 
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where Z is a normalization factor. Consequently K J I  is positive when /~  is posi- 

tive. Assuming that / / (~)0 ')  is normalized one can prove that K ~ .  I I (K)  converges 
to/]~°(K),  pointwise, hence / / (~)  is also of positive Fourier type. 

There is another interesting feature to be learned from this equation. Suppose 
that there exists for some ( ~ [2 -~, 1] a nontrivial fixed point /1(o) ,  which is of  
positive Fourier type. The fixed-point equation for/~(o~ is the same as the original 
one, provided one replaces/7 by fl' = l/B2fl and J by J '  = li2J. H e n c e / ~ o ) ,  if 
positive, is the fixed point of a physical system with ~ ~ [½, 2-~], i.e., ~ ~ [0, 1]. 
The existence of//(°~ of  positive Fourier type implies therefore the existence of the 
free energy of a system with unstable potential (0 < c~ < 1) and free spin distri- 
but ion/~o~.  It is not known whether this possibility can be ruled out for the hier- 
archical model. 

Thirdly the Griffith type: suppose that 

H(~) "~ ~ exp(~  J,.stitj]c3(Z t j -  2v). 
t ~ = + l  \ l ~ J  ] 

(A.4) 

A direct calculation then yields: 

K~.ll(~) ~_ • exp (,~j(Jt.j - flBI4~.2)(t,tj + t;tj) 
t l ,  t l~ = "t" 1 i 

,, J fiB~42 t,O ~ ' 22¢~,). (A.5) 

Repeated application of this formula shows that the coupling Ji,j will be dimin- 
ished by a constant not exceeding the value fiB (422 - 22I~'2) - 1 The distribu- 
tion remains therefore of the Griffiths type when fl fulfils: 

fiB/22 < 4J,.x (1 - 114~'2), i ~ j. (A.6) 

The newly generated couplings between tj and t~ remain positive when ~" > 2 -~, 
which is also the condition required for stability. 
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