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Noyes’ theory of diffusion-controlled reactions is revisited in great details. First, it is shown that this
theory provides an interesting alternative approach to perform molecular dynamics simulations for
diffusion-controlled reactions. With this approach, reaction rate can be determined from simulations
of nonreactiveequilibrium systems. No annihilation procedure is needed to simulate the reaction
event. Provided that encounters with different reactants are strictly uncorrelated, the reaction rate
can be determined more directly and accurately than by the methods that compute the survival
probability. We describe in detail the method for accurately determining the key quantity in Noyes’
theory, i.e., the first recollision probability, from molecular dynamics simulations. It will also be
shown that arguments similar to those in Noyes’ theory allow us to establish an exact relation~under
the same assumptions of absence of correlations! between the distribution function of a reacting
system at the encounter distance and that of a nonreactive equilibrium system. This relation can be
used to fix the boundary condition at the reaction distance in the approaches based on a diffusion
equation. New insights have been gained into the usefulness of the recollision probability. The
recollision probability also provides a very useful tool for characterizing quantitatively some
dynamic features of the cage effect for reactions in dense liquids. Finally, the method presented here
may also be used to calculate reaction rates for diffusion-controlled reactions in systems where the
dynamics cannot be described by a diffusion equation. ©2001 American Institute of Physics.
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I. INTRODUCTION

The study of diffusion-controlled reactions has alread
long history. More than 80 years ago, Smoluchowski form
lated the first theoretical approach.1 In this now classic
theory, the relative motion of reactants is described b
diffusion equation. The disappearance of reactants is
counted for by an absorbing boundary condition at an
counter distance. Almost all the subsequent developm
followed the same line of thought. Various improvemen
and refinements have been made. Debye was the first to
sider the effect of long-range Coulomb forces between re
tants on the reaction rate of diffusion-controlled reaction2

Collins and Kimball introduced the radiation boundary co
dition to describe the chemical reaction at the encounter
tance in a more satisfactory way.3 Hydrodynamic interaction
has been considered by introducing distance-dependent
tive diffusion coefficient.4 The study of diffusion-controlled
reactions has also been extended to reversible reactions5–10

In more recent investigations,11–15 a variety of approache
~truncated hierarchy for nonequilibrium reduced distributi
functions, memory function formalism, etc.! is applied to

a!Electronic mail: dong@catalyse.univ-lyon1.fr
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obtain macroscopic kinetic equations. Nevertheless, the
derlying dynamics is nearly always described by a diffus
equation.

Although the approach based on the diffusion equat
started by Smoluchowski has constituted an overwhelm
mainstream in the study of diffusion-controlled reactio
~see Refs. 16–19 for reviews!, exceptions do exist. In 1954
Noyes proposed a theory based on a quite differ
perspective.20 Noyes’ theory is based on a collision pictur
In the formulation of his theory, Noyes introduced an ima
nary counterpart system, which is identical to the react
system under consideration in all the aspects except tha
reactants are deprived of their reactivity. So, they can re
lide again and again without ever reacting. Although th
idea may appear surprising at first sight, Noyes showed
the recollision probability in the counterpart system c
serve as a key ingredient in formulating a quite gene
theory for reaction kinetics. Unfortunately, this recollisio
probability is not readily accessible to direct experimen
measurements. Noyes tried to determine it by resorting
diffusion equation, thereby restricting himself to only tho
cases where the relative motion of reactants may be
scribed by a diffusion equation. In this way, he obtained o
the long-time asymptotic behavior of this function and r
covered the result of Smoluchowski at long times. Duri
5 © 2001 American Institute of Physics



fu
he
u

e
tiv

e
ol
e
re
p
so
tia
e

ffe
of
re
an
ea
ha
e
to

re
th
n
a
ed
it

di
th
in
th
e
if-

t
d

r

ed

r

.
tio

r
a

s

nce

o-
f a
3D

red

e of
lly
al

ss,
pth.
asic
by

ill

the
n be
ter-
s

this
tion
r a
e

ules
w

-

ri-

6266 J. Chem. Phys., Vol. 114, No. 14, 8 April 2001 Van Beijeren, Dong, and Bocquet
the past 46 years, to our knowledge, nobody has made
ther attempts to determine the recollision probability in t
whole time range. Nowadays, such a task becomes a q
feasible one by using computer simulations. One purpos
the present work is to accomplish this, so that a quantita
assessment can be made for Noyes’ theory.

In the present work, by revisiting Noyes’ theory, w
gained some new insights into the usefulness of the rec
sion probability. We realized that this quantity also provid
a very useful tool for characterizing some dynamic featu
of the cage effect, which is one of the most helpful conce
for understanding the dynamics of chemical reactions in
lution. Although the local structure revealed in the poten
of mean force between reactants may be considered as
dence for the existence of a solvent cage, the cage e
itself is intrinsically of a dynamic nature. The recollisions
two reactants at short times are some of the most di
manifestations of the cage effect. Despite its importance
the huge amount of literature on reactions in solution app
ing to the concept of the cage effect, a precise dynamic c
acterization of this effect is still lacking. In this paper, w
will show that the recollision probability can be used
make such a characterization.

The paper is arranged as follows. Noyes’ theory is
called in the next section. We also present a derivation of
kinetic equation for the survival probability. This derivatio
allows one to clearly see the fundamental assumptions
restrictions on which the theoretical framework is bas
Section III contains a brief treatment of the long-time lim
of reaction rate. Although the description is based on a
fusion equation, new insights are gained, especially into
choice of boundary conditions by applying the ideas
Noyes’ theory so as to obtain a sensible expression for
contact value of the distribution function. In Sec. IV, w
discuss how to determine the recollision probability by d
ferent methods from molecular dynamics~MD! simulations.
Section V is devoted to the cage effect, relating its dynam
features to recollisions. Our simulation results are presen
and discussed in Sec. VI. Conclusions are summarize
Sec. VII.

II. A NEW PERSPECTIVE ON NOYES’ THEORY

Here, we consider irreversible reactions of the gene
type

A1B→C1D. ~1!

In a dilute gas, the rate of such a reaction can be express
k5PreactnAB with nAB being the collision frequency of anA
molecule withB molecules in the nonreactive counterpa
system andPreact the probability of reaction in a collision
betweenA andB. The collision frequency is an equilibrium
property that does not depend on transport coefficients
such a case, the reaction is usually qualified as an activa
limited one. For a dense system with a large value ofPreact,
the situation is radically different. A pair of molecules ente
ing a collision can recollide a large number of times in
dense system if the reaction probability,Preact, is small. If
Preact is not too small, the pair of reactants will react almo
certainly once it starts a collision sequence. LetNAB denote
r-
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the average number of collisions in a recollision seque
between two nonreactive molecules.NAB is finite for three-
dimensional systems and diverges for one- and tw
dimensional systems since the recollision probability o
pair is equal to 1 for 1D and 2D systems. Thus, in a
system the collision frequency of a given molecule,A, with
new B molecules, i.e., molecules it has never encounte
before, is given bynnew5nAB /NAB after a transient initial
stage. For values ofPreact such thatPreactNAB@1, the reac-
tion rate forA is simply nnew.

In some sense, Noyes’ theory20 is a generalization of the
above idea which takes into account the time dependenc
recollision probability. The conventional approach usua
starts with the following kinetic equation for the surviv
probability of a moleculeA, SA(t):

dSA~ t !

dt
52k~ t !SA~ t !, ~2!

wherek(t) is the time-dependent reaction rate. Neverthele
the status of this equation is scarcely discussed in any de
In order to see more clearly the assumptions behind the b
kinetic equation, we have chosen a different approach
starting from a formally exact expression forSA(t)

SA~ t !5 (
N50

`

Pnr~N,t !P~N,t !, ~3!

whereP(N,t) is the probability thatN collisions take place
in the time interval@0,t# andPnr(N,t) is the probability that
none of theN collisions is a reactive one. Although Eq.~3! is
an exact expression, it is of little practical use. Now, we w
show under what further assumptions Eq.~3! can be reduced
to Eq. ~2!. Here, we are considering the cases in which
reaction rate is time dependent. The time dependence ca
easily understood with the help of the nonreacting coun
part system introduced by Noyes.20 Since the reaction rate i
equal to the collision frequency of theA molecule with new
B molecules in the nonreacting counterpart system, and
frequency decreases with time, it is obvious that the reac
rate must also decrease with time. Now, the probability fo
collision in the time interval@0,t# being a reactive one can b
expressed as

Preact~ t !5
*0

t dt8 k~ t8!

nt
, ~4!

wheren is the total collision frequency of theA molecule in
the nonreacting counterpart system with any other molec
~either a solvent or aB molecule regardless of it being a ne
one or a recollided one, son5nAS1nAB , nAB : collision
frequency ofA with Bs andnAS: collision frequency ofA
with solvent molecules!. If the correlation between the colli
sions can be neglected,Pnr(N,t) is given simply by (1
2Preact(t))

N andP(N,t) can be described by Poisson dist
bution, i.e.,

P~N,t !5
~nt !N

N!
e2nt. ~5!
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With the above expression ofPnr(N,t) and P(N,t), the
summation in Eq.~3! can be easily carried out, which lead
to the following compact form:

SA~ t !5expS 2E
0

t

dt8 k~ t8! D . ~6!

This is simply the solution of Eq.~2!.
The basic kinetic equation, i.e., Eq.~2!, was used intu-

itively by Noyes and many others without any discussion
its status. Now, the above derivation shows very clearly
basic assumption behind it. Its solution, i.e., Eq.~6!, is noth-
ing else but a generalized Poisson distribution for the c
where the reactive collisions are not uniformly distribut
over time ~or, in other terms, for the cases with a tim
dependent reaction rate!. Moreover, in the above description
the reaction between a pair of reactants is treated as an e
independent of the reactions between other pairs. So,
framework described above is rigorously valid only at lo
concentrations of reactants.

Now, we introduce, following Noyes,20 the probability
density f (t) for a first recollision between anA and a B
molecule at timet after a preceding collision at time 0. Her
we make a further simplifying assumption thatf (t) will be
independent of the preceding number of collisions betw
the AB pair. For systems at low density or with a rapid
changing local structure, this will be a good assumption,
for systems in which the local surrounding of the p
changes only slowly in time, this assumption may cause
viations whenPreact,1. Nevertheless, this assumption is n
involved in the case ofPreact51 and has negligible effect in
the case ofPreact!1, where the time-dependent part n
longer plays any role. So, it can be expected that this
proximation most affects the results in the cases ofPreact

with intermediate values. With the above assumption,
time-dependent reaction rate, in the case of a generalPreact,
can be expressed as

k~ t !5nABPreactF12PreactE
0

t

dt1 f ~ t1!

2Preact~12Preact!E
0

t

dt2E
0

t2
dt1 f ~ t22t1! f ~ t1!

2Preact~12Preact!
2E

0

t

dt3E
0

t3
dt2 f ~ t32t2!

3E
0

t2
dt1 f ~ t22t1! f ~ t1!2¯G . ~7!

This equation can be understood intuitively by noting tha
the counterpart system the probability density for anAB col-
lision giving rise to a reaction is justnABPreact. But, this
could be counted as a true reaction in the reacting sys
only if there were no reactive collisions between the sa
pair before. The probability for such an event is expres
precisely by the subtracted terms. In deriving Eq.~7!, it is
assumed that the recollisions subsequent to the first one
uncorrelated.

As already pointed out by Noyes himself, the functi
f (t) is not accessible to direct experimental measurement
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no prescription is provided for the practical determination
f (t), the above theory remains a very formal one. Noy
attempted to calculatef (t) from a diffusion equation. This
provided only the asymptotic estimation off (t) at long
times. To our knowledge, no investigation has been mad
determine this function over the whole time range. Our ta
in Sec. IV will be to make such a determination under t
simplifying assumptions specified above.

III. DESCRIPTION BY DIFFUSION EQUATION

After the description based on a collision picture giv
in the last section, a brief recall of the approach based o
diffusion equation is given below. Our special emphasis h
is on discussing some relationships between these two t
of approaches. In particular, we will show how the resu
obtained from the collision picture can help to determine
proper boundary conditions in the approach based on di
sion equation.

In a liquid phase, the relative motion of two particles c
be described quite well by a diffusion equation in a poten
of mean force,21 F(r ), related to the pair correlation func
tion, g(r ), by

g~r !5e2F~r !/kBT, ~8!

wherekB is Boltzmann’s constant andT the absolute tem-
perature. For the sake of simplicity, we consider only sph
cal molecules without internal degrees of freedom. Oth
wise, one has to consider diffusion in an extend
configuration space including the internal degrees of freed
of the two reactants. The diffusion coefficient in general d
pends on the intermolecular distance due to hydrodyna
interactions.4 At large distances, it approaches the sum of
self-diffusion coefficients of the two reactants. For a sphe
cal distribution ofB molecules around a givenA molecule,
the diffusion equation takes the form

]rAB~r ,t !

]t

5
1

r 2

]

]r F r 2e2F~r !/kBTD~r !
]

]r
~eF~r !/kBTrAB~r ,t !!G . ~9!

As pointed out first by Smoluchowski,1 the reaction rate~or
the asymptotic rate at which anA molecule encounters new
B molecules! can be equated to the rate at whichB molecules
are transported to theA molecule by diffusion from a source
which is homogeneous at infinity with density,rB . As a
generalization of this, the time-dependent reaction rate
cussed before can be estimated from the time-dependen
lution of this diffusion problem with a homogeneous initi
density of B molecules. The boundary conditions can
written in general as

4ps2D~s!g~s!F ]

]r
~eF~r !/kBTrAB~r ,t !!G

r 5s

5krAB~s,t !,

~10!

rAB~r→`,t !5rB . ~11!
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Smoluchowski used the absorbing boundary condition,
rAB(s,t)50, which corresponds to the limitk→`. Collins
and Kimball3 pointed out that a finite value fork should be
used in order to remove the unphysical singularity of
reaction rate att50 in Smoluchowski theory. Nevertheles
the meaning and the value that one should give tok do not
appear clear in the original paper of Collins and Kimball a
many subsequent developments. A few years ago, Zhou
Szabo proposed a choice ofk from an intuitive basis.22 They
chosek in such a way that the initial reaction rate,k(t
50), is given exactly, i.e., it is equated tonABPreact ~in fact,
Zhou and Szabo considered only the casePreact51!. We will
show below thatk can also be fixed by an exact relatio
which should be satisfied byrAB(s,`) and which is com-
pletely equivalent to the requirement imposed by Zhou a
Szabo in the case ofPreact51 but accounts for also the gen
eral cases of 0,Preact,1.

The stationary solution of Eq.~9! with the boundary con-
ditions, Eqs.~10! and~11!, leads to an expression ofk(`) of
the form

k~`!5krAB~s,`!5
kg~s!rB

11kg~s!E
s

` dr

4pr 2g~r !D~r !

.

~12!

So far, k may still be considered as an undetermin
parameter of the theory. Now, we will describe a method
determining the value ofk in an unambiguous way. For sim
plicity, we first consider the case thatPreact51. We can apply
a reasoning similar to that of Noyes to establish a relat
between the distribution ofA andB at the collision distance
s, in a reacting system and that in the nonreactive coun
part system. Let us start from the stationary state and turn
the reactivity at, say,t10. TheB molecules are now allowed
to recollide with the centralA molecule and on average wi
do so 1/(12Precoll) times @see Eq.~15! for the definition of
Precoll#. Therefore, if again we may ignore correlations b
tweenB molecules, the resulting density ofB molecules at
the encounter distance,s, from theA molecule will build up
to rAB(s,`)/(12Precoll) as soon as the system relaxes
equilibrium. Obviously, this is nothing else but the equili
rium density ofB molecules, i.e.,rBg(s), in the nonreacting
counterpart system

rAB~s,`!

12Precoll
5rBg~s!. ~13!

From Eq.~7!, in the case ofPreact51, one has

k~`!5nAB~12Precoll!, ~14!

wherePrecoll is the recollision probability given by

Precoll5E
0

`

dt f~ t !. ~15!

Now, Eqs.~14!, ~13!, and the first equation in Eq.~12! leads
to

k5nAB /~g~s!rB!. ~16!

This is identical to the choice proposed by Zhou a
Szabo.22 The fitting ofk given by Zhou and Szabo was mad
.,
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to obtain the exact initial reaction rate,k(0). Ourfitting just
described above aims atk(`). But, both approaches bo
down to the requirement that the initial rate and the stati
ary one should be proportional to the local density ofB mol-
ecules in the immediate neighborhood to theA molecule with
the same proportionality constant and therefore they lead
the same result.

Substitutingk given in Eq.~16! into Eq. ~12!, one ob-
tains

k~`!5
kabs~`!nAB

kabs~`!1nAB
, ~17!

where

kabs~`!5F E
s

`

dr
1

4pr 2rBg~r !D~r !G21

, ~18!

andkabs(`) is the asymptotic value of the reaction rate o
tained by using the absorbing boundary condition, i
rAB(s,t)50. In the case ofPreact,1, we can proceed in a
similar way. In this case, Eq.~7! gives the following result
for the long-time limit of the reaction rate:

k~`!5
nABPreact~12Precoll!

12~12Preact!Precoll
. ~19!

Now, the contact value of the steady-state distribution fu
tion, rAB(s,`), is related to the equilibrium distribution
function,g(s), of a nonreacting fluid through the equatio

rAB~s,`!
12~12Preact!Precoll

12Precoll
5rBg~s!. ~20!

For Preact51, Eq. ~20! reduces simply to Eq.~13!. For
activation-limited reaction, i.e.,Preact!1, we see clearly,
from Eq. ~20!, that the reactants are distributed as in a no
reacting equilibrium system. Equations~19!, ~20! and the
first equality in Eq.~12! yield the following value fork:

k5
PreactnAB

g~s!rB
. ~21!

Substituting Eq.~21! into Eq. ~12!, we obtain

k~`!5
kabs~`!nABPreact

kabs~`!1nABPreact
. ~22!

Equations~21! and ~22! are the extension of Eqs.~16! and
~17! for the cases in which a collision between reactants d
not necessarily lead to a chemical reaction. Now, the ph
cal meaning of the parameterk is shown very clearly by Eqs
~16! and ~21!. In the literature, there was a widely sprea
misinterpretation ofk. It is often stated that the absorbin
boundary condition~i.e., k→`! describes the situation tha
every collision leads to a reaction~i.e., Preact51! and the
radiation boundary condition~finite k! accounts for the cir-
cumstances that the reaction takes place with a probab
Preact,1, at each collision. To our knowledge, Zhou an
Szabo22 were the first to point out that the radiation bounda
condition should be used even in the case ofPreact51. The
results presented above@Eq. ~16! in particular# confirm this
from a different approach and generalize it to the case wi
reaction probability smaller than 1.
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IV. MOLECULAR DYNAMICS SIMULATIONS

A. Model

Dong, Baros, and Andre´ proposed, in 1989, a ver
simple model for the prototype reaction described by Eq.~1!
and carried out the first molecular dynamics simulation
diffusion-controlled reactions.23 In that paper, all the reac
tants and solvent molecules are described by hard spher
the same size and mass. The only difference between r
tants and solvent molecules is that a collision betwee
moleculeA and a moleculeB leads immediately to a reac
tion, i.e., the casePreact51. The survival probability of theA
molecule is determined in a way very similar to that used
a real experiment. In the present work, we adopt the sa
model as that used in Ref. 23 for describing diffusio
controlled reactions. In this case, the nonreacting counter
system is simply a fluid of hard spheres with the total den
r5rA1rB1rS ~rA , rB , andrS are, respectively, the den
sities of A, B, and solvent species!. As in Ref. 23, we will
restrict ourselves to the case with the speciesA at infinite
dilution.

B. Calculation of first recollision probability

In Sec. II, it is shown that the key quantity in Noye
theory is the first recollision probability,f (t). We describe
now the different methods we developed to determine
function. First, we should recall that the first recollisio
probability, f (t), as defined by Noyes is not a normalize
probability density. The integral off (t) is equal to the prob-
ability that a pair of molecules will recollide after their firs
collision @see Eq.~15! and Ref. 20#. The normalized func-
tion, F(t)5 f (t)/Precoll, describes the distribution of th
length of time intervals between two successive collisio
undergone by the same pair of molecules. This distribut
function can be readily measured from a molecular dynam
simulation. However, the functionF(t) contains less infor-
mation than the functionf (t). Hence, the determination o
F(t) is not sufficient to obtainf (t). One also needs to de
termine the recollision probability,Precoll, in some way.

The recollision probability considered here is closely
lated to the return probability extensively investigated in
studies of random walks on lattices.24 From the famous work
of Polya,25 we know that the return probability is equal to
for random walks in 1D and 2D systems. In 3D system
Precoll,1 and different values have been found depending
the lattice structures on which random walks a
considered.24 To our knowledge, no study has been repor
on the recollision probability for off-lattice models. In prin
ciple, the recollision probability can also be measured
rectly from a molecular dynamics simulation. The fate o
colliding pair is either to recollide or to separate forev
Hence, a straightforward way to calculatePrecoll is to find out
from all the collided pairs how many have made subsequ
recollisions. Nevertheless, this simple and direct method
fers from two complications directly related to the finite si
of the simulation system and the finite length of simulati
runs. To determinePrecoll in a finite length run, a long bu
finite observation time,tmax, is prescribed. If a pair of mol-
ecules colliding att50 does not recollide up tot5tmax, they
r
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are considered to escape each other forever. For real ma
scopic systems,tmax→`. For a finite system used in simula
tions, reliable results forPrecoll can be obtained only iftmax

can be chosen in such a way that the results forPrecoll do not
depend on the choice oftmax. We will come back to discuss
this point in Sec. VI when the simulation results are p
sented. The second complication is thattmax cannot be in-
creased to an arbitrary large value for a finite system, si
all the colliding pairs are bound to recollide after a certa
time ~estimated to be that needed for a particle to diffu
across the system! because of the use of periodic bounda
conditions in a molecular dynamics simulation. The prese
of such artificial recollisions plagues the accurate determ
tion of Precoll. So, special attention must be paid to elimina
the contribution of the artificial recollisions in the calculatio
of Precoll. First, one needs to distinguish the artificial reco
lisions from the real ones. For this, the particle positions
followed in two distinct ways. While the position vectors a
updated as usual using periodic boundary conditions, a m
toring array is used at the same time to record the distan
of all pairs since their first collision. This array is update
without applying the periodic boundary conditions. At ea
real recollision, the distance recorded in the monitoring ar
must be equal to the collision distance, i.e.,s ~hard sphere
diameter!. An artificial recollision takes place between on
collided particle and the image of its partner. For such
recollision, the distance recorded in the monitoring arr
does not equals. In fact, this corresponds to the situation
which the considered pair is continuing to move away fro
each other after their previous collision. So, in the calcu
tion of Precoll, one can plausibly view this situation as a
event in which the two considered particles escape from e
other forever.

The recollisions after long times are essentially det
mined by the diffusion process. Hence, the long-tim
asymptotic behavior of the recollision probability,f (t), can
be expected to be well described by the diffusion equati
In three dimensions, this leads to a decay off (t) as t23/2 at
long times. This slow decay complicates a very accurate
termination ofPrecoll from simulations of finite length. The
drawback of the method which determines the recollis
probability by f (t)5PrecollF(t) is that the inaccuracy in
Precoll will spread over the whole time range forf (t). How-
ever, there does exist an alternative which allows us to
tract Precoll from other quantities closely related to the reco
lision probability. One such quantity is the probability of th
A molecule colliding with new particles~the meaning of the
term ‘‘new particle’’ is the same as that explained in Sec.!.
The definition and the relation of this probability tof (t) is

Pnew~ t !5 K DNnew~ t !

DNT~ t ! L 512E
0

t

dt8 f ~ t8!, ~23!

whereDNT(t) is the total number of collisions undergone b
a given molecule in the time inteval@ t,t1Dt# andDNnew(t)
the number of collisions with a new particle in the same tim
interval. The average denoted by the angled bracket is
average over all different particles and over many time o
gins in order to obtain good statistical accuracy. Now,
asymptotic valuePnew(`) provides another way to deter
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mine Precoll sincePnew(`)512Precoll. From the long-time
behavior of f (t), it follows that the deviation ofPnew(t)
from its asymptotic value approaches zero ast21/2. There-
fore, a very accurate determination ofPrecoll can be obtained
by simulating over a long time and extrapolating the simu
tion results ofPnew(t) to t→`. This will be discussed in
more detail in Sec. VI.

V. RECOLLISION PROBABILITY AND THE CAGE
EFFECT

In this section, we will show that the first recollisio
probability, f (t), is not only the key ingredient of Noyes
theory but also contains information about the cage effec
the liquid phase. Up to now, the cage effect has bee
roughly defined qualitative concept. However, some of
dynamic features can be characterized quantitatively by
recollision probability,f (t).

The first thing we would like to know is how the cag
effect shows up in the system properties considered her
cages do exist, the recollisions must take place in a q
characteristic way, i.e., occurring in clusters in time. In ea
cluster, the recollisions are separated by short time inter
characteristic for the shuttling around of a pair within a ca
Then, one should see a longer period during which ther
no recollision. This corresponds to the escape from the c
If eventually the two molecules meet again, one will s
another sequence of recollisions with short time intervals
so on. In Fig. 1, a few recollision sequences are shown.
can see that the recollisions indeed take place in such a
This leads to a natural splitting off (t) into two parts,

f ~ t !5 f s~ t !1 f l~ t !, ~24!

where f s(t) is the short-time part describing the recollisio
due to the cage effect andf l(t) the long-time part accounting

FIG. 1. Some examples of recollision sequences between two given
ticles for a high density~h50.41! hard sphere fluid~tmc : mean collision
time!.
-

in
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s
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.
is
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e
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for the re-encounters after escaping from the cage. Now
us define more preciselyf s(t) and f l(t) in Eq. ~24!. For this,
the cage size needs to be prescribed first. The radial di
bution function clearly shows the shell structure of neighb
around a given particle in a liquid phase. A plausible cho
for the cage size is the radius of the first-neighbor shell.4 So,
the cage radius,Rcage, is taken to be the position of the firs
minimum in the radial distribution function or equivalent
the position of the barrier to enter into the first-neighbor sh
in the potential of mean force. For hard spheres at liq
densities, this radius is found near 1.5s. Then, f s(t) is de-
fined as the contribution tof (t) from all the recollisions
taking place before leaving the cage defined above while
recollisions, after escaping from the cage, contribute tof l(t).
Hence, the determination off s(t) and f l(t) by molecular
dynamics simulations necessitates the monitoring of the
tance between the colliding pair. Since the recollisions a
long times result from diffusive motion,f l(t) decays slowly
as t23/2, as already pointed out in the last section.f s(t) de-
scribes the distribution of recollisions due to the cage eff
and dies away very quickly. Useful characteristics of t
cage effect can be obtained fromf s(t) and the decomposi
tion made in Eq.~24!. First, the probability that a recollision
is induced by the cage effect can be obtained straight
wardly from

x recoll
s 5

*0
`dt fs~ t !

*0
`dt f~ t !

. ~25!

In a similar way, the probability of a recollision taking plac
after escaping the cage is

x recoll
l 5

*0
`dt f l~ t !

*0
`dt f~ t !

. ~26!

The average time between the recollisions due to the c
effect is given by

t recoll
s 5

*0
`dt t fs~ t !

*0
`dt fs~ t !

. ~27!

As a rough estimate, the time needed for a molecule
undergoing a collision to go to the cage boundary is equa
t recoll

s /2. The pictorial presentation of a recollision sequen
given in Fig. 2 can help to show this.

Now, we will see how the characteristic behaviors
f s(t) and f l(t) enter into the kinetic description ofSA(t). In
the case ofPreact51, the reaction rate given by Eq.~7! be-
comes

k~ t !5nABS 12E
0

t

dt1 f ~ t1! D . ~28!

When Eq.~28! is substituted into Eq.~6!, one obtains

SA~ t !5expH 2nABtF12E
0

t

dt1 f ~ t1!G2nABE
0

t

dt1 t1f ~ t1!J .

~29!

As pointed above,f l(t) decays as

ar-
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f l~ t !5
a

t3/2 t→`. ~30!

The determination ofa from molecular dynamics simula
tions will be described in Sec. VI. Furthermore, one wou
expect thatf s(t) dies away quickly. These observations le
to an asymtotic behavior for the survival probablity of t
form

2 ln SA~ t !5k~`!F t1
4a

12Precoll
At1

d

12Precoll
G t→`,

~31!

with

d5E
0

`

dt t fs~ t !1E
0

`

dt tF f l~ t !2
a

t3/2G . ~32!

From the approaches based on a diffusion equation, an
pression similar to Eq.~31! can be obtained forSA(t) ~see,
e.g., Refs. 16 and 18!. However, they contain only the firs
two terms ~proportional tot and At! but not the constan
term, d/(12Precoll). It was observed a long time ago26 that
the experimental results for lnSA(t) can often be fitted more
satisfactorily by a second-order polynomial ofAt with a con-
stant term. In the approach proposed by Andre´ et al.,26 a
constant term is introduced from the outside. The above d
vation of Eq.~31! shows clearly that such a constant te
arises naturally in the theory based on the recollision pr
ability. The first term ind is related to the mean recollisio
time due to the cage effect@see Eq.~27!#.

VI. NUMERICAL RESULTS AND DISCUSSIONS

Our model for the reaction system has been descri
in Sec IV A. For this model, the nonreacting counterpart s
tem introduced in Noyes’ theory is simply a fluid of ha
spheres. All the results to be presented below are obta
from molecular dynamics simulations with 2048 ha
spheres. A range of densities fromh50.15–0.48 is consid-
ered~h5prs3/6, r: number density;s: hard-sphere diam

FIG. 2. Schematic presentation of recollisions inside a cage.
x-

ri-

-

d
-

ed

eter!. The simulation results of the collision frequency a
the diffusion coefficient at these densities are summarize
Table I.

A. First recollision probability

In Fig. 3, the probability for first recollision,f (t), is
presented for different densities. At short times,f (t) in-
creases quickly when the density is increased. This refl
directly the enhancement of the cage effect at higher de
ties leading to a larger number of recollisions.

In order to characterize the cage effect more quant
tively, we proposed in Sec. V to split the recollision pro
ability into a short-time part,f s(t), and a long-time part,
f l(t). The results of this decomposition at a low dens
~h50.15! and a high density~h50.41! are presented in Fig
4. In both cases,f s(t) is a fast decaying function. We wil
show shortly that it decays exponentially at long times.f l(t)
has quite different behaviors when the density is changed
moderate densities, the amplitude off l(t) relative tof s(t) is
much larger than at high densities. This reflects directly
enhancement of the cage effect at increased densities
high densities, all the recollisions at short times take pla
inside a cage, as shown by the fact thatf l(t)50 in the initial
region @see Fig. 4~b!#. The results in Fig. 4 also show tha
f l(t) has a long time tail and spreads over a large time ran
This accounts for the fact that the recollision times after ca
escape can vary from a few mean collision times to`. As
pointed out earlier, one can show by using a diffusion eq
tion that the recollision probability has a long time tail pr

TABLE I. Simulation results for collision frequencyn, diffusion coefficient
DAB , recollision probabilityPrecoll , coefficienta in the long-time tail of
f l(t) @see Eq.~30!#.

h na DAB
b Precoll ac

0.15 3.07 1.126 0.350 0.19
0.30 10.11 0.362 0.781 0.32
0.41 21.61 0.142 0.941 0.21
0.48 35.17 0.0579 0.984 0.14

Units:
an:AkBT/ms2 ~kB : Boltzmann constant,T: absolute temperature,m: mass
of a particle!.

bDAB(DA1DB): As2kBT/m.
ca:Atmc ~mean collision time,tmc51/n!.

FIG. 3. First recollision probability,f (t), of a hard sphere fluid at variou
densities.~a! h50.15 ~long dash!; ~b! h50.3 ~dot-short dash!; ~c! h50.41
~short dash!; ~d! h50.48 ~full !.



y
it
d

-

r
an
th

r
o
a

sa

y

-

is

.

n-

col-
n
ous
e-
alue

-
n-
n
col-

ion

g

6272 J. Chem. Phys., Vol. 114, No. 14, 8 April 2001 Van Beijeren, Dong, and Bocquet
portional tot23/2. This asymptotic behavior is confirmed b
our simulations. In the next subsection, we will discuss
consequence on the asymptotic decay of the time-depen
reaction rate.

In Fig. 5, f s(t) at h50.41 is plotted along with an ex
ponential fitting function, f s(t)5 f 0

s exp(t/trecoll
s ). In fact,

only the value of f 0
s is fitted to the simulation result fo

f s(0). t recoll
s is taken to be the simulation result of the me

recollision time inside a cage. From Fig. 5, one can see
f s(t) decays exponentially fort.20tmc ~with tmc the mean
collision time!. At shorter times, its decay is slightly slowe
than an exponential function. This implies that at very sh
times, the instants of recollisions do not occur completely
random. Nevertheless, the exponential function is a quite
isfactory approximation over the whole time range.

FIG. 4. Decomposition of the first recollision probability,f (t) ~full !, into
the short-time part,f s(t) ~dash!, and long-time part,f l(t) ~dot-dash!. ~a!
h50.15 and~b! h50.41.

FIG. 5. Exponential decay of the short-time part of the first recollis
probability, f s(t), at h50.41. ~a! simulation result~full !; ~b! fitting ~dash!
with f 0

s exp(t/trecoll
s ) ~f 0

s50.109 andt recoll
s 56.60tmc!.
s
ent

at

rt
t
t-

B. Reaction rate

As discussed in Secs. II and IV@see in particular Eqs.~7!
and ~23!#, the reaction rate is given by

k~ t !5nABPnew~ t !, ~33!

for the case thatPreact51. As pointed out in Sec. IV B,
Pnew(t) can be measured directly in MD simulations b
counting the collisions with new particles.k(`) and Precoll

can be obtained fromPnew(`). With the asymptotic behav
ior of f (t) given in Eq.~30!, Pnew(t) has the following as-
ymptote:

Pnew~ t !512Precoll1
2a

At
t→`. ~34!

At long times, the plot ofPnew(t) versust21/2 is a straight
line if Eq. ~34! holds. The slope and the intercept of th
straight line allow us to determinea and Precoll. The
asymptotic plot ofPnew(t) versust21/2 is presented in Fig. 6
The asymptotic form given in Eq.~34! is perfectly confirmed
by the simulation results. It holds for all the densities co
sidered here. The results forPrecoll and a obtained in this
way are presented in Table I. As one can expect, the re
lision probability,Precoll, increases with density. The retur
probability of a random walk has been determined on vari
lattices.24 It depends on the topology of the lattice and d
creases with the number of the nearest neighbors. Its v
ranges from 0.442 for a diamond lattice~4 nearest neighbors!
to 0.256 for face-centered-cubic~fcc! lattice ~12 nearest
neighbors!.24 Nevertheless, it is not straightforward to com
pare the recollision probability obtained here for a co
tinuum model with the return probability of random walks o
lattices. From the results obtained here, we see that the re
lision probability can reach much higher values~especially at

FIG. 6. Asymptotic behavior of the probability for a given particle collidin
with a new particle~one which has not collided with the given particle!,
Pnew(t). The dashed line extrapolates each asymptote tot→`. ~a! h50.15;
~b! h50.3; ~c! h50.41; ~d! h50.48.
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high densities! in the case of off-lattice models. Obviousl
this enhancement is due to the cage effect of the solv
which is not taken into account in the study of random wa
on lattices. Although high-density liquids exhibit an fcc-lik
local structure, diffusing particles primarily move around
the cages formed by their neighbors rather than jump
from lattice site to lattice site. In the former process, as o
might expect intuitively, the recollision probability can rea
much higher values than in a random walk with isotrop
jump distribution~but one could mimic the cage effect in
random walk model by introducing a high probability fo
back jumps!.

For the model considered here, Noyes’ expression
the reaction rate,k(t), is exact provided thatf (t) is known
exactly, the concentration ofB molecules is low, and the
correlations between subsequent recollision times can be
glected in the case thatPreact,1. Then, with thePrecoll de-
termined by the extrapolation method just described, one
readily calculate the steady-state reaction rate, i.e.,k(`)
5nAB(12Precoll). It is to be noted thatk(`) cannot be de-
termined accurately by using the simulation method p
posed in Ref. 23. By that method,k(t) is determined indi-
rectly through the differentiation of the survival probabilit
which leads to quite noisy results at long times and ma
the extrapolation fort→` hard. In Sec. III, a quite genera
expression ofk(`), i.e., Eq.~22!, is derived from a diffusion
equation with the Collins–Kimball boundary condition. It
interesting to see how accurate the steady-state reaction
is given by Eq.~22! over a wide density range. In Fig. 7
k(`) as given by Eq.~17! @i.e., the particular case of Eq
~22! with Preact51# is compared to the predicted value
k(`)5nAB(12Precoll). For this comparison, further ap
proximations have been made, i.e.,g(r )51 and D(r )
5DAB5DA1DB . With these approximations,kabs(`) re-
duces to the result of the classic Smoluchowski theo
kS(`)54psDABrB , which is also plotted in Fig. 7. One
sees that Eq.~17!, even with the above approximation
gives results in remarkably good agreement with the sim
tion results over the whole density range. The classic Sm
chowski theory gives accurate results only for systems wi
density higher thanh50.3. At low densities,kS(`) is not
even bounded by the collision frequency, whilek(`)

FIG. 7. Steady-state reaction rate,k(`) ~measured with respect to the co
lision frequencynAB!. MD simulation results~dots!; results obtained from
Eq. ~17! with g(r )51 and DAB(r )5DA1DB ~full line!; classic Smolu-
chowski theory~dot-dash line!.
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given by Eq.~17! always satisfies the physical requireme
that k(`)<nAB @also true for Eq.~22!#. It is worthwhile
noting that the failure of Smoluchowski theory to produ
accurate results fork(`) at low densities results mainly
from the inappropriateness of the boundary condition ar
5s. But, this failure is not really related to the diffusio
equation itself since the same diffusion equation is used
obtain Eq.~17!.

Since Fig. 7 shows such a good agreement between
simulation and the diffusion equation under the approxim
tionsg(r )51 andD(r )5DA1DB , it is tempting to see how
good a similar approximation is for the time-dependent re
tion rate,k(t). In the framework of these approximation
k(t) is given analytically by the expression of Collins
Kimball theory for the time-dependent reaction rate, us
the value ofk given by Eq.~16! @g(s) is set to 1# for the
intrinsic reaction rate. Figure 8 shows the comparison of
results obtained from this approximation and simulations
h50.41. At long times (t.60tmc), there is a very good
agreement between the theoretical approach and the sim
tions. By construction~see Zhou and Szabo22!, the approach
also gives the exact result fork(0). In theintermediate time
range (01,60tmc), the reaction rate is quite underestimat
by the above theoretical approach. This may be due in pa
the simplification made by neglecting the spatial variation
the diffusion coefficient and the potential of mean force.
might also be possible that the short-time recollision pro
ability is overestimated by the diffusion equation even w
the radiation boundary condition.

VII. CONCLUSIONS

In the present work, a derivation of the kinetic equati
of the survival probability is presented for reacting syste
with a time-dependent reaction rate. From this derivation,
basic assumptions behind the kinetic equation, mostly ab
the absence of various types of correlations, become v
clear. In the absence of correlations, the reaction rate
closely related to the first recollision probability,f (t), in a
nonreacting counterpart system. Molecular dynamics sim
tions have been carried out to determine this quantity. W
the simulation results forf (t), various features of Noyes
theory are investigated in a thorough way. For the sim
reaction model considered in this work, Noyes’ theory giv

FIG. 8. Time-dependent reaction rate,k(t) ~measured with respect tonAB!
at h50.41: Simulation result~full line!; Collins–Kimball theory with the
intrinsic rate given by Eq.~16! ~dashed line!.
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the exact expression for the reaction rate in the limit of dil
reactants. Using the recollision probability, we find a relat
between the contact value of the reactant–reactant distr
tion function in a stationary reactive system and that of
equilibrium distribution function in the corresponding nonr
acting equilibrium system. This relation allows us to esta
lish unambiguously a general boundary condition at the c
lision distance,s, for totally diffusion-controlled~Preact51!
as well as partially diffusion-controlled~Preact,1! reactions.
Using this boundary condition in a diffusion equation, o
obtains a fairly elaborate expression for the steady-state
action rate@Eq. ~22!#. Remarkably good results are obtain
from such an approach fork(`) over the whole density
range under the approximation thatg(r )51 andD(r )5DA

1DB . However, the same approach underestimates the
action rate,k(t), in the intermediate time range.

Up to now, all the simulations of diffusion-controlle
reactions employed an annihilation procedure to acco
for the disappearance of reactants due to chem
reaction.22,23,27We demonstrated here that Noyes’ formalis
provides a very interesting as well as highly efficient alt
native to the previous simulation method. For obtaining
reaction rate in a system with dilute reactants, one ne
to carry out only simulations on an equilibriumnon-
reactivesystem. This is quite reminiscent of the method
determining transport coefficients by equilibrium molecu
dynamics simulations with the help of Green–Kubo formu
instead of nonequilibrium MD simulations. Here, Noyes’ e
pression of the reaction rate in terms of the recollision pr
ability of a nonreactive equilibrium system plays a role sim
lar to the Green–Kubo formulas. So far, Noyes’ theory h
not been exploited in depth in the literature. Further inve
gations in this direction might lead to new insights and a
proaches.

A further strength of Noyes’ theory is that it is not re
stricted to systems that are strictly described by a diffus
equation, as in the case of Smoluchowski theory and its
tensions. A first example could be fluids at moderate de
ties, in which the recollision probability is large enough
make the reaction rate~in the casePreact51! notably differ-
ent from the collision frequency, but the two-particle dyna
ics from which the recollision time is to be calculated is n
of diffusive type, especially at short times. Other examp
include dilute or moderately dense systems with a small
action distance and a long-range attractive force between
reactants which may strongly enhance the recollision pr
ability, diffusion in solid-state materials where the recol
sion probability is determined by a hopping process rat
than a continuum diffusion equation, or motion through p
rous media where recollisions may be enhanced at long ti
due to confinement to a single pore for extended times. In
these cases, computer simulations of the probability den
of first recollision may be done in principle without any gre
problems, even though analytical approaches would
highly problematic or at least different from Smoluchows
theory.

In Noyes’ theory, correlation effects due to the fir
recollisions of the same pair of particles are taken fully in
account regardless of the type of dynamics. Neverthel
e

u-
e

-
l-

e-

e-

nt
al

-
e
ds

r
r
s

-
-
s
i-
-

n
x-
i-

-
t
s
-

he
-

r
-
es
ll

ity
t
e

i

s,

correlations due to competition with other reactive pairs
ignored completely~bothA andB particles are assumed to b
very dilute!. In other modern approaches,11–15 the latter type
of correlation is taken into account~often by quite refined
techniques!, but most of them assume simple diffusive d
namics. In this respect, the above two types of approac
are complementary. In addition, Noyes’ theory ignores c
relations between the recollisions after the first one. When
the particles are very mobile, this should be an excell
approximation. But when cage configurations start to cha
very slowly ~e.g., close to a glassy state!, this type of corre-
lation may become quite important.

The clustering of recollisions found in the present wo
reveals unambiguously the characteristic two-particle
namics due to the cage effect. We show that the first
collision probability not only plays an important role i
determining the reaction rate, but also provides a very he
ful tool for characterizing some quantitative features of t
cage effect. In view of its usefulness in the study of the
important subjects, we believe that the recollision probabi
deserves more investigation. For example, it is highly de
able to have tractable kinetic theory expressions for t
quantity.
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