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We consider the flow of a dilute gas around a macroscopic heavy object. The 
state of the gas is described by an extended Boltzmann equation where the 
interactions between the gas molecules and the object are taken into account in 
computing the rate of change of the distribution function of the gas. We then 
show that the extended Boltzmann is equivalent to the usual Boltzmann equation, 
supplemented by boundary conditions imposed on the distribution function at the 
surface of the object. The remainder of the paper is devoted to a study of the 
solution of the extended Boltzmann equation in the case that the mean free path 
of a gas molecule is small compared to some characteristic dimension of the 
macroscopic object. We show that the Chapman-Enskog normal solution of the 
ordinary Boltzmann equation is not in general a solution of the extended equation 
near the surface of the object and must be supplemented by a boundary layer 
term. We then introduce a projection operator method which allows us to 
decompose the solution of the extended equation into a normal solution part 
and a boundary layer part when the gas flow is sufficiently slow. As a specific 
example of the method we consider the flow around a sphere, and derive the 
Stokes-Boussinesq form for the frequency-dependent force on the sphere for 
arbitrary slip coefficient. This derivation is the first one that starts from the 
Boltzmann equation for a general dilute gas and incorporates the effect of the 
boundary layer on the drag force. 
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1. I N T R O D U C T I O N  

In a series of four papers, of which this is the first, we use the kinetic theory 
of gases to study the nonequilibrium properties of a dilute gas when there is 
a large object moving in it. The first two papers will be devoted to an 
analysis of the force on a large sphere or cylinder moving in the gas, the 
third will treat the torque on a sphere rotating in the gas, and the fourth 
paper will treat the diffusion of a large particle undergoing Brownian motion 
in the gas. 

In the first two papers, our treatment of the force on the object in the 
gas will be based on the Boltzmann equation, or rather an extension of it 
designed to take into account the effect of the molecule-object collisions on 
the distribution function for the gas. ~1'2) At first glance it may seem somewhat 
superfluous to spend any effort on a new derivation of the force exerted 
by a gas on a sphere or cylinder from the Boltzmann equation under 
conditions where one might expect continuum hydrodynamics to apply. One 
can argue that the Chapman-Enskog normal solution of the Boltzmann 
equation ~3~ leads directly to the Navier-Stokes hydrodynamic equations, 
from which the Stokes and Boussinesq forms for the drag force on a sphere 
can be derived. However, this argument does not take into account the fact 
that there is an important restriction on the Chapman-Enskog solution, 
namely, it is implicitly assumed that there are no boundaries or large objects 
present in the system. If, however, there are objects or boundaries, it is well 
known that the Chapman-Enskog solution breaks down near them. ~6'7) 
This breakdown is associated with the existence of a kinetic boundary layer 
next to the boundary which is on the order of a mean free path thick and 
where there is a disturbance of the normal solution caused by collisions of 
the gas particles with the boundary. Furthermore, a complete determination 
of the normal solution far from the boundaries requires that boundary 
conditions on the hydrodynamic functions be obtained from the microscopic 
mechanism for reflection of the gas particles at the boundary, and such 
boundary conditions are not determined by the Chapman-Enskog solution. 

In view of these comments, it would seem appropriate to present a 
derivation of the hydrodynamic results for the force on an object using a 
kinetic theory where the presence of  boundaries or objects is taken into 
account from the very beginning, and where the effects of the kinetic 
boundary layer can be estimated. Such a program for the derivation of 
hydrodynamic results from the Boltzmann equation is not new, and a number 
of cases have already been treated. (6'7) What is new in our work is the 
attempt to base a kinetic theory of  hydrodynamic flows on the extended 
Boltzmann equation, which will be described in the next section. We will 
show in this paper and in those following it that the use of the extended 
Boltzmann equation has the following advantages: 
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(a) We will be able to express the effects of boundaries or of  objects 
in the gas on the distribution function in terms of some compact, formal 
expressions. Although these expressions are difficult to evaluate in general, 
they will be quite useful in our analysis, and represent a technical advance 
over the earlier and more cumbersome methods of  analyzing boundary 
effects. 

(b) We will be able to clarify the dynamical origin of hydrodynamic 
results, such as Stokes' law for the force on a sphere, in terms of collision 
processes taking place in the gas. 

By analyzing hydrodynamic results such as Stokes' law in terms of micro- 
scopic collision processes, we will be able to make some progress toward an 
understanding of why hydrodynamic concepts and results are often very 
useful in describing processes of diffusion or Brownian motion in fluids, even 
when the diffusing particle is identical to the other particles in the fluid 
(see Ref. 8 for a review). 

Now we turn our attention to the main subject of  the present paper, 
the calculation of the drag force on a large sphere or cylinder moving in a 
dilute gas. In general the drag force is a function of several parameters. Let V 
be a characteristic velocity of the gas stream around the object; c the velocity 
of  sound in the gas; R a characteristic size of  the object; l the mean free 
path of  a molecule in the gas; a the range of the intermolecular force; M the 
mass of the object; and m the mass of a gas molecule. From these one can 
construct the following dimensionless quantities: the Mach number ~ =' 
V/c, the Knudsen number ~ = l/R, the ratio a/l of  the intermolecular force 
range to the mean free path, and the mass ratio m/M. The properties of  the 
gas flow depend on all these parameters, and the determination of  this 
dependence is one of the central problems of kinetic theory. 

In our treatment we restrict ourselves to the case where three of  these 
parameters plus a product of two of  them, namely J ,  all, m/M, and a/R, 
are all much less than unity, that is, we discuss the flow of a dilute gas 
around a macroscopic sphere or cylinder at small Mach numbers only. 

So far most of the work on these flows has been concentrated on the 
limiting cases where ~(( << l, the Stokes or Clausius regime, where the mean 
free path is much smaller than the characteristic size of the object, and 
. ;(  >> 1, the rarefied or Knudsen regime. (6'7) 

For  X << 1 the Boltzmann equation, together with the microscopic 
reflection law for gas molecules hitting the surface of  the object, should give 
the Stokes-Boussinesq results for the force on a sphere, say. More generally, 
it should produce the complete distribution function outside the sphere; that 
is, it should not only give the normal distribution function, which prevails 
outside the kinetic boundary layer, and which is completely determined by the 
boundary conditions for the hydrodynamic densities (number, momentum, 



338 Henk van Beijeren and J. R. Dorfman 

and energy density) at the surface of the sphere, but it also ought to yield the 
kinetic boundary layer which is present close to the sphere. 

There has been a considerable amount of work on the derivation of 
continuum hydrodynamics from the Boltzmann equation as well as on the 
determination of the properties of the kinetic boundary layer and of the 
boundary conditions satisfied by the hydrodynamic densities3 2'6'71 Here we 
mention some of the main results. The hydrodynamic boundary conditions 
have been obtained usually by considering flow patterns with one- 
dimensional geometry bounded by a semiinfinite flat plate, since locally this 
should be a good approximation for any macroscopic, smooth surface. 
Maxwell was the first to obtain qualitatively correct boundary conditions 
for this case.(9~ Most models that have been studied so far for the reflection 
of gas particles at the surface give rise to the so-called stick boundary 
condition, where the average velocity and the temperature of the gas at the 
boundary surface coincide with the velocity and temperature of the surface. In 
the special case of specular reflections, however, one obtains slip boundary 
conditions; only the velocity components normal to the surface coincide for 
both gas and object. In addition, both the tangential stress exerted by the 
gas on the boundary and the temperature gradient normal to the surface 
vanish. In general, there are corrections to these boundary conditions which 
are proportional to the Knudsen number of. 

These corrections involve a new set of coefficients, called slip coeffi- 
cients, 3 whose values depend on the structure of the boundary layer. 
Although there are a few examples where the simple one-dimensional 
geometry and a simplified gas model allow an exact calculation of boundary 
layer effects, in general slip coefficients cannot be calculated exactly. Instead 
one must resort to variational methods or moment expansions to calculate 
them. Recently, Scharf (1~ and later McLennan and Chiu (11~ presented a 
derivation of Stokes' law together with slip coefficients from the Boltzmann 
equation to which they added source terms to represent the interaction of the 
gas molecules with the moving sphere. However, these source terms were 
not derived from a microscopic molecule-sphere interaction model. Later we 
will comment in more detail on the precise connection between their work 
and that presented in this paper. 

It is also worth mentioning here the main features of the flows that 
obtain when the Knudsen number is not small, since we will have occasion to 
refer to these cases also. For  ~ >> 1, the case of rarefied gas flows, the 
Boltzmann equation is usually solved by an iterative method. (1'2"~2) The 
most straightforward iteration gives rise to an expansion of  the drag force 
in powers of the density of the gas. The coefficients in this expansion, 

3 See Ref. 5 for a discussion of the slip coefficient in hydrodynamics. 
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however, are divergent except for the first few. The reasons for this divergence 
are the same as those for the divergences in the density expansion of  transport 
coefficients like shear viscosity and heat conductivity. As in those cases, the 
divergences can be removed by a partial resummation of  diverging terms, 
and, as in those cases, nonanalytic terms in the density expansion appear. For  
certain models a few terms are known in this resummed expansion. (12''3) 

For  the intermediate region where ~ is neither very large nor very small 
few results are known. Cercignani and co-workers have employed variational 
methods to calculate in the BGK model the general 2(  dependence of several 
quantities, among which is the drag force on a sphere. (6'14) The agreement 
of their results with experiments on real gases is remarkably good. 

The subject of this paper is a calculation of the drag force on a sphere 
in the hydrodynamic regime by an extension of  the Chapman-Enskog normal 
solution method, where the existence and properties of the kinetic 
boundary layer are taken explicitly into account. To do this the interactions 
between the gas molecules and the sphere can be treated as an additional 
term in the Boltzmann equation describing the rate of change of the 
distribution function due to such interactions. Since this term is localized 
on the surface of the sphere, it can be treated as a source term for the 
ordinary Boltzmann equation. It is a source term which does depend on the 
form of the distribution function at the surface, but given this, the source 
term is determined entirely by the gas-surface interaction mechanism. The 
solution of  the Boltzmann equation extended with these extra terms is 
obtained by expanding the distribution function about total equilibrium and 
by projecting it onto the space of normal solutions of the ordinary Boltz- 
mann equation. Because the kinetic boundary layer cannot be calculated in 
practice, the solution of the extended Boltzmann equation is obtained to 
leading order in oU only. For  different reflection mechanisms the expected 
boundary conditions for the fluid fields arc obtained and Stokes' law for the 
force on a sphere is recovered. 

In a second paper we treat the solution of the linearized extended 
Boltzmann equation by means of  an iterative expansion. The iterates are 
interpreted straightforwardly to describe certain well-defined dynamical 
events in the system. In the rarefied gas case identification with the usual 
expansions is direct and also the usual resummations can be interpreted 
simply in terms of  dynamical events. In the hydrodynamic regime the 
dynamical processes are dominated by propagation through hydrodynamic 
modes and reflections at the boundary of the sphere. Therefore the time 
evolution operator for the distribution function is separated into a hydro- 
dynamic and an orthogonal part with the aid of  the same projection operator 
that was used in the first paper. The iterative expansion is then regrouped into 
terms containing one, two, three, etc., hydrodynamic propagators. The con- 
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tributions of these terms to the distribution function form a series whose 
formal summation leads to precisely the same equations and results as 
obtained in the first paper. 

Since both the rarefied and hydrodynamic gas flows can be described 
by the same extended Boltzmann equation, it follows that the same 
dynamical events are responsible for the shape of the distribution function 
and for the drag force in the hydrodynamic regime as in the rarefied gas 
regime. The difference is, of  course, that the contributions from various 
dynamical events differ in the various regimes. However, in neither the 
rarefied regime nor the hydrodynamic regime is the most straightforward 
iteration of the Boltzmann equation convergent, which means that the 
behavior of the distribution function is always dominated by collective 
effects. In the rarefied gas case this collective effect is the damping of free 
particle propagation by random collisions with other gas molecules. In the 
hydrodynamic regime the same effect is present, but it is dominated in 
turn by the collective action of  the hydrodynamic modes excited by repeated 
collisions of the gas molecules with the sphere. 

An extra complication occurs in the case of the drag on an infinitely long 
cylinder. In this case the stationary linearized hydrodynamic equations do not 
even have a solution, which can be traced back to the circumstance that 
the influence of the average motion of the fluid far from the cylinder may 
not be neglected. (r If one includes this effect by linearizing about the 
equilibrium distribution function valid far from the cylinder, and not about 
one in the rest frame of the cylinder, no problems arise and both the 
generalized Chapman-Enskog method and the iterative method can be 
applied as before. In the hydrodynamic equations this leads to the well known 
Oseen term/15) In our third paper the same iterative method is employed to 
calculate the torsional drag on a rotating sphere or cylinder. 

Finally, the iterative method is also of interest because it provides a link 
between the theory of Brownian motion and the theory of diffusion of a 
microscopic particle. This is treated in our fourth paper. 

The organization of this paper is as follows: In Section 2 we introduce 
the extended Boltzmann equation for a dilute gas in contact with a sphere. 
In Section 3 we discuss the Chapman-Enskog normal solution and its 
shortcomings if a boundary is present. In Section 4 the extended Boltzmann 
equation is linearized and the distribution function is separated, by a projec- 
tion onto hydrodynamic modes, into a normal part and a boundary layer 
part. In Section 5 the projection operator used is critically examined and 
found to possess an unphysical feature--namely that after the application 
of the projection operator the source term in the equation for the projected 
part of the distribution function is not confined to the surface of the 
sphere, but rather the source becomes spread out over a distance of a few 
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mean free paths around the sphere. This is repaired by the introduction of  a 
slightly different projection operator that keeps the sources confined to the 
surface of the sphere. In Section 6 the extended Boltzmann equation is 
solved to leading order in the Knudsen number for a few different reflection 
laws at the surface of  the sphere. The normal part of the resulting distribu- 
tion function and the drag on the sphere are calculated. The main computa- 
tional result of this paper is given by Eq. (6.43), where we obtain the' 
frequency-dependent form of  Stokes' law appropriate for the various kinds of  
molecule-sphere collision mechanisms considered here. In Section 7 we 
consider an alternative approach to this solution of the difficulties discussed 
in Section 5 by passing directly to the continuum limit, Jr" ~ 0. The boundary 
layer effects can still be taken into account in the limit, and we again recover 
Stokes' law. 

2. THE E X T E N D E D  B O L T Z M A N N  E Q U A T I O N  

We consider the equation satisfied by f(r ,  v, t), the single-particle dis- 
tribution function of the gas. We take f(r ,  v, t) to be normalized so that 
f(r ,  v, t) dr dv is the number of  gas particles in dr about r and in dv about 
v at time t. In the absence of external forces, but in the presence of a 
macroscopic object, f(r ,  v, t) can change in time through three different 
processes: 

(i) Free streaming, where molecules at (r, v) at time t move to 
(r + v dr, v) at time t + dt. 

(ii) Collisions of gas molecules with each other. The effects of  these 
collisions on f(r ,  v, t) is taken to be given by the usual Boltzmann collision 
operator. 

(iii) Collisions of  the gas molecules with the object. These collisions also 
cause f(r ,  v, t) to change in time. Although they are usually treated by 
formulating their effect on f as a boundary condition, there is no need to 
do so, and the result of these collisions can be incorporated directly into 
the Boltzmann equation. 

Furthermore, the macroscopic object will be accelerated by its collisions 
with gas molecules and possibly also by some external force. It is more 
convenient then to use an (accelerated) coordinate system in which the object 
is at rest at all times. In this coordinate frame virtual forces acting on the 
particles are an additional source of  change for the distribution function. A 
complication is that the actual acceleration of the object due to collisions 
with gas molecules is rapidly fluctuating in time, and also it contains 
angular as well as linear components. These fluctuations, however, are a 
result of  fluctuations in the one-particle distribution function of  the gas 
molecules and it is not our intention here to include these in the description 
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of the physical system under consideration. Instead, we will only take into 
account the average acceleration of the object by the gas molecules, as would 
follow from a smoothed-out distribution function, such as the one occurring 
in the Boltzmann equation. If one realizes that the fluctuations in the 
velocity of the object are on the order of the thermal velocity (kBT/M) 112, 
it becomes clear that this approximation must be very good as long as the 
object has a velocity of macroscopic size. Furthermore, if, for instance, the 
system (including the flow pattern) has rotational symmetry about some axis, 
the average angular acceleration vanishes. 

Taking into account all four above-mentioned processes by which 
f(r,  v, t) may change in time, we are led to the extended Boltzmann equation 

~f(r, v, t) ~ ,  
(?t - v.Vf(r, v, t) + a( t) .~,  f(r,  v, t) + J( j ; f )  + "If(r, v, t) (2.1) 

The term - v . V f  accounts for the change in f due to free streaming and 
a.(O/dv)f describes the change in f due to the virtual forces acting on the 
gas particles in the accelerated reference frame~ The quantity a is related to the 
(average) velocity V of the object by the relation a(t) -- +dV(t)/dt. The term 
J( f , f )  takes into account the intermolecular collisions and is given by (2'3'6'7) 

ffofo J (J ; f )=  dv I bdb dO I v - v i i  

x [J(r, v', 0f(r, v(,  t) - f ( r ,  v, t)f(r, v,, t)] (2.2) 

where b and 4) are respectively the impact parameter and the azimuthal 
angle describing a two-body collision, a is the range of the intermolecular 
potential, which may be infinite, and v' and v (  are the restituting velocities. 
The term Tf  describes the rate of change of f due to molecule-object 
collisions. The precise form of T depends on the shape of the object and 
the interaction mechanism between the molecules and the object/2) In the 
case that the object is a sphere, a fairly general form of T is given by 

- |  v)l (2.3) 

Here R is the radius of the sphere, which is assumed to be centered at the 
origin, d denotes a unit vector, the d-integration runs over the unit sphere, 
and | is the unit step function l-| = 1 for x >/0 and vanishes else- 
where]. By f § we mean the limit for f as the surface of the sphere is 
approached from the outside. The action of the operator T can be under- 
stood with the aid of Fig. 1. We take the vertical axis to be in the direction of 
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(a) 

F i g .  1 

V 

(b) 

v. To compute the rate of decrease of particles with velocity v through 
collisions with the sphere, we note that such particles will collide with the 
sphere at a point r = R& on the hemisphere v.& < 0. These collisions are 
accounted for by the second term on the right-hand side of (2.3). The rate 
at which particles with velocity v are produced at the sphere is given by the 
first term. The kernel P(v', v, ~) gives the probability that a molecule hitting 
the sphere at the position R~ with velocity v' is scattered back with velocity v. 
It has to satisfy a few conditions: Because of the geometric restrictions 
imposed on a collision by the sphere, P(v', v, ~) must be proportional to the 
product |174 Furthermore, P must satisfy the normalization 
condition 

f d v  ~) = O ( - v ' . ~ )  (2.4) P(v', I t , 

expressing the conservation of particles in collisions at the surface. Finally, 
if the gas-sphere system is in equilibrium (which implies that the sphere has 
zero velocity and zero acceleration with respect to the gas), the solution of 
the extended Boltzmann equation must be the corresponding Maxwell- 
Boltzmann distribution 

f(r,  v, t) = n W(r)cp(v)  (2.5) 

where n is the equilibrium density; the overlap function W is given by 

and 

where (kB/~)- 1 
constant. 

W(r) = O ( r  - R)  (2.6) 

(o(v) = ([3m/2~) 3/2 exp( - 3 m v : / 2 )  (2.7) 

= T is the equilibrium temperature and kB is Boltzmann's 
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In that case P has to satisfy the thermostat condition ~2'6'7) 

f dv' P(v', v, 8)]v'-~ko(v') | (2.8) 

There are circumstances where the kernel P(v', v, ~) depends on time or on the 
distribution function near the wall; for instance, whenever the wall tempera- 
ture adjusts itself locally to the gas temperature. Under these circumstances, 
P(v', v, ~) may not satisfy the thermostat condition. For  simplicity we restrict 
ourselves here to cases where this is not so, and we assume that (2.8) is 
satisfied. 

In this paper we will mainly be interested either in the case of specular 
reflection (Fig. la), in which the radial component of the velocity of  a gas 
molecule is reversed while the component parallel to the surface of the 
sphere is not changed, or in the case of diffuse reflection (Fig. lb), where it is 
assumed that whenever a particle hits the sphere it is absorbed and 
immediately reemitted according to a Maxwell-Boltzmann distribution de- 
scribed by a temperature T w. The kernel P in these cases has the form 

Psp(V', v, ~) = | 6(v - 2(v.~)~ - v') (2.9a) 

Pdi(V', V, ~)  ----- ( 2 7 z f l w m ) l / Z O ( - - v " ~ ) O ( v ' ~ ) l v . d ] ~ p ~ , ( v )  (2.9b) 

Here fl~ = (kBT~)- 1 and q~(v) = (flwm/27r) 3/2 e x p ( -  flwmV2/2). One easily 
checks that (2.9a) satisfies the conditions (2.4) and (2.8) and so does (2.9b) 
provided fl = flw. 

Inserting (2.9a) and (2.9b) into (2.3), one obtains the following explicit 
forms for the action of the specular and diffuse reflection operators, 
respectively: 

Tspf(r, v, t) 

= R 2 fdO Iv'~[ 6(r - RO) 

x {|  [r, v - 2(v.8)~, t] - |  v, t)} 

Toif(r , v, t) (2.10a) 

R 2 .( d~ Iv" t~l 6(r - RS) 

- O ( - v . , ~ ) f + ( r ,  v, t)~ (2.10b) 
) 



Kinetic Theory of Hydrodynamic  Flows. I 345 

Furthermore, we will sometimes consider a linear combination of the specular 
and the diffuse reflection operators defined by 

T~t = ~Tdi "~ (1 - c~)Tsp (2.ll) 

The coefficient c~ is called Maxwell's accommodation coefficient. (9) 
Having defined the T operator for the cases of interest, we point out that 

the extended Boltzmann equation (2.1) can be viewed as an inhomogeneous 
Boltzmann equation whose inhomogeneous term is given by ~'f As such, 
T f  is a somewhat unusual inhomogeneous term since it depends on the 
distribution function f that we want to determine. 

We now show that the extended Boltzmann equation (2.1) is also 
equivalent to the ordinary Boltzmann equation where the Tf te rm does not 
appear, but supplemented by boundary conditions that are imposed on the 
distribution function at the surface of the sphere. To do this we look for 
solutions of (2.1) which vanish inside the sphere, since no particles should be 
located there. That is, we look for solutions of the form 

f(r, v, t) = W(r)f(r,  v, t) (2.12) 

where f(r,  v, t) is taken to be continuous as a function of r as r--, R +. 
Substituting f given by (2.12) into (2.1) and noting that 

v.  v w(r )  = (v. ~) 6(r - R) (2.13) 

where f = r/r, we obtain 

W(r) -~ + v . V f -  a(t).~v f -  J ( f , f )  = T f  (2.14) 

with 4 
T f =  T f -  (v.f) g(r - R ) f  + (2.15) 

Using (2.10a) and (2.10b), we find that T~p and Tdi a r e  given by 

Tspf= O(v.f) (5(r - R )Jv . i l { f+[r ,  v - 2(v.f)f, z] - f + ( r ,  v, t)} 
(2.16a) 

( 
Ta i l  = | 8(r -- R)Iv.~:J~w(V)(2nflwm) t/a 

�9 r)J (r, v ,  t) - f + (r, v, t) ( 2 . 1 6 b )  

4 Notice that, if acting on functions which are discontinuous at the surface of  the sphere, the 
T operator defined in (2.15) is not identical to the T operator defined in Ref. 16. The 
T operator defined here always evaluates the function it acts upon at the outside of the 
sphere. For continuous functions there is no difference between the T operator used here 
and that  defined in Ref. 16. 
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Since the right-hand side of (2.14) is proportional to 6(r - R) andf i s  assumed 
to be continuous at r --- R, a solution to this equation can only be found if the 
right- and left-hand sides vanish identically. The vanishing of the left-hand 
side requires that fsatisfies 

c3f v . V f - a ( t )  3 + "Ovv f=- J ( f f ) '  r > R (2.17) 

while the vanishing of the right-hand side requires, in the case of specular 
reflection, that 

f + ( r , v , t ) = f + [ r , v - 2 ( v . f ) L t ]  a t r = R  + for v - f > 0  (2.18a) 

and in the case of diffuse reflection, that 

f+ ( r ,  v, t) = (2~zfiwm)l/2~ow .fdv' ]v ' . f j |  u [) 

a t r = R  + for v . ? > 0  (2.18b) 

Equation (2.17) together with the boundary conditions (2.18a) or (2.18b) 
forms the usual starting point for the kinetic theory of gas flOWS, (6'7) and 
we see that this is equivalent to (2.1). We also see from Eqs. (2.12), 
(2.14), and (2.16a) or (2.16b) that the distribution function f ( r , v ) =  
n~o(v)W(r) is indeed the solution of (2.1) that corresponds to the case of 
total equilibrium. 

A similar discussion can be given for cylindrically shaped objects and 
so on, but we will not elaborate on this here. 

3. N O R M A L  S O L U T I O N S  A N D  THE 
E X T E N D E D  B O L T Z M A N N  E Q U A T I O N  

The usual way of solving the Boltzmann equation in a system without 
boundaries (either an infinite or a periodic system) is to assume that 
starting from some initial state, the distribution function of the gas will 
decay after a few mean free times to a so-called normal solution. (3~ Normal 
solutions vary slowly in space and time, that is, they vary appreciably only 
on a macroscopic length scale S such that S >> l, the mean free path, and 
on a time scale S/c, where c is the sound velocity. They are completely 
determined by the hydrodynamic densities, which are the particle density 
n(r, t), the energy density [or equivalently the local temperature T(r, t)], and 
the momentum density [or equivalently the local velocity u(r, t)]. Further- 
more, they can be expressed by an expansion in powers of the gradients 
in the form 

fNs(r, v, t) = fo(r, vln, u, T) +f l ( r ,  vln, u, T) + . . .  (3.1) 
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Jo is a local equilibrium distribution, given by 

fo(r, vln, u, T) = n(r, t)[fi(r, t)m/2n] 3/2 exp[-f l ( r ,  t)mC2(r, t)/2] 

-= n(r, t)cp~(C)=-fo(r, C) (3.2) 

where fl(r, t) = [kBT(r, t)] -1 and C(r, t) = v - u(r, t). The f l  is proportional 
to gradients of the hydrodynamic variables, and is given by 

f1(r, vln, u, T) =fo{A(CZ)C.V log T(r, t) 

+ / ~ m ~ ( C 2 ) ( c c  - �89 t)} (3.3) 

Here ~ is the unit dyadic tensor. The functions A(C 2) and B(C 2) are deter- 
mined as solutions of the inhomogeneous integral equations 

LA(C2)C = (flmC2/2 - ~-)C (3.4a) 

LB(C2)(CC - �89 = CC - �89 (3.4b) 

where L is the linearized Boltzmann operator, defined by 

f;o;o Lq)(r, C, t) = dC1 b db do IC - C1]fo(r, C1) 

x {q3(r, C', t) + q~(r, C~', t) - qb(r, C, t) - q)(r, C~, t)} (3.5) 

This operator has the following important properties: it is symmetric and it 
is isotropic in C. Furthermore, it is nonnegative definite, it has five zero 
eigenfunctions, which are the so-called collisional invariants, 1, C, and C z 
(or equivalently 1, v, and v 2) and the spectrum of L has a gap between 
zero and the set of nonzero eigenvalues/6) 

Uniqueness of the solutions of (3.4a) and (3.4b) is obtained by requiring 
that the functions on the left-hand side are orthogonal to the zero eigen- 
functions of L. The only resulting condition which is not satisfied auto- 
matically as a consequence of isotropy is 

f dC fo(C)C2A (C 2) = 0 (3.6) 

By inserting the normal solution (3.1) into the Boltzmann equation, 
multiplying by 1, v, or v 2, and integrating over all velocities, one obtains the 
hydrodynamic equations in a form depending on the order of truncation of 
(3.1). For example, keeping only f0, one obtains the Euler equations. Keeping 
both fo and f l ,  one obtains the Navier-Stokes equations, 

~?n/~3t + V.nu = 0 (3.7a) 

mn(On/•t + u. Vu) -- nF - V(nkaT) + V. {2q[D - �89 (V.u)]} (3.7b) 

3nkB(OT/Ot + u.VT) + nk~TV.u  = V.2 V T +  2r/[D:D - �89 2] (3.7c) 
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Here F is an external force acting on the particles. In our case F is a 
virtual external force, given as F = -ma( r ,  t). The rate of strain tensor D 
has components given by 

191~ = �89 + Ou~/~x~) (3.8) 

The shear viscosity r/and the heat conductivity 2 follow from the Boltzmann 
equation as 

q = {-m2/[15kBT(r, t)]} fdCJo(C)C4B(C 2) (3.9a) 

2 = --�89 f dC  fo(C)(fimC2/2 - ~)C2A(C 2) (3.9b) 

Now the question arises whether the same normal solutions satisfy the 
extended Boltzmann equation describing a system in contact with its walls. 
We will presently see that in general this is not the case, since it is well 
known that close to the boundaries there exist kinetic boundary layers as a 
result of the specific interactions between the gas molecules and the 
walls. (6'7) Then the next question is whether the normal solution is an 
approximate solution of the extended Boltzmann equation, and, if so, to what 
order of approximation. We will demonstrate how this problem can be 
attacked formally in the case of flow past a sphere and we will show how 
the boundary conditions on the hydrodynamic equations are obtained to 
leading order in the Knudsen number Yf = l/R. 

Does there exist a normal solution of the form (3.1) satisfying the 
extended Boltzmann equation (2.1), or equivalently, Eqs. (2.17) and (2.18)? 
Since the expansion (3.1) is a solution of the ordinary Boltzmann equation 
(2.17), we need only be concerned about (2.18). Consider first the case of 
diffuse reflection. According to (2.16b), the action of Tdi on fo and j ] ,  
respectively, is given as 

TdifO = {~)(v.~)lv.~l ~(r  -- R) n(r,  t) 

x {(flwm/2rc)3/2 exp(-flwmv2/2)(2rcflwm)l/2 f dv' lv'.flO(-v'.f) 

X (flm/2rc) 3/z e x p ( -  f imC'2/2) 

-- (flm/2~z) 3/2 exp(-- flmC2/2)} (3.10a) 
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Tdifl = | g(r -- R) n(r, t) 

• {(flwm/2g)3/2[exp(-flwrnv2/2)](2~fl~m) ~/2 

• .I" dr' ]v'. rr| - v'. ~)(~m/2~)3/2[exp( - ~mC'2/2)] 

• [A(C'Z)C'.V log T + flmB(C'2)(C'C ' -- �89 

- (flrn/27z)3/Z[exp(-~mC2/2)] 

x [A(C2)C:V log T + flmB(C2)(CC - �89 (3.10b) 

If f is approximated by fo alone, the condition Td~fo = 0 gives rise to 
hydrodynamic stick boundary conditions 

u(r, t) = 0, fl(r, t) =/~w for r = R (3.11) 

Together with boundary conditions at infinity, these are sufficient to deter- 
mine a solution of the hydrodynamic equations. They lead, for instance, to 
Stokes' result F = - 6 x r / R V  for the drag force on a sphere of radius R 
moving through a fluid with shear viscosity r/ at a constant velocity V. 
If the approximation for f is extended to f = f o  +f~,  the condition 
Tdi(f0 + f l )  separates into two conditions Tdif0 = 0 and Tdifl = 0, because 
Taifo and Tdifl  are  linearly independent functions of the velocity. But the 
condition Ta~f~ = 0 cannot be satisfied at the same time as Td~fo = 0, since 
it requires that not only the local velocity itself, but also all its first spatial 
derivatives vanish at the boundary, which is not in agreement with'the known 
solutions of the hydrodynamic equations. Addition of f2,f3,  etc. to the 
approximation for f makes matters worse, because each Tail/ is linearly 
independent of all the previous ones, so each added term requires new 
boundary conditions to be fulfilled simultaneously with the ones obtained 
already. 

Hence we must conclude that the normal solution alone does not satisfy 
the extended Boltzmann equation. Instead, this equation will have solutions 
consisting of a normal part and a nonnormal part, which adjusts the total 
solution to the conditions imposed by the boundary. Since the nonnormal 
part is generated by the boundary, it may be expected to vanish exponentially 
within a distance of a few mean free paths from the walls. Because incon- 
sistencies between the hydrodynamic boundary conditions and the require- 
ment T f  = 0 show up only i f f  is expanded through order l /R (f~ is of this 
order relative to fo), the nonnormal or boundary layer part of the solution 
will presumably also be of order I/R. Hence the boundary conditions will 
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also be affected in order l/R only and to leading order in the Knudsen number 
the stick boundary conditions (3.11) will still be correct. 

Let us next turn to specular boundary conditions. Here the action of 
Tsp on the normal solution is given as 

Tspfo = n(~rn/27r)3/Z| I 6(r - R) 

x [ e x p ( -  ~mC'2/2) - e x p ( -  [3mC 2/2)] (3.12a) 

Tspjl = n(flm/2rc)3/20(v'r)l v" fl 6(r - R) 

x {[exp(-[3rnC'2/2)][A(C'2)C'.V log T + flmB(C '2) 

x (C'C'  - �89 Vu] - [ e x p ( -  �89 

x [A(C2)C.V log T + ~mB(C2)(CC -�89 (3.12b) 

where C' = v - 2(v.f)f - u(r, t). The requirement that the rhs of (3.12a) is 
equal to zero leads to the hydrodynamic boundary condition u-f  = 0 only. 
This is of  course not sufficient to determine a solution of the hydrodynamic 
equations. However, addition of the boundary conditions resulting from the 
condition T~ofl = 0 leads to the following sufficient set of boundary 
conditions : 

u-f  = 0 (3.13a) 

f .V log T =  0 for r = R (3.13b) 

(fgi + gif):V u = 0 (3.13c) 

Here gi is any unit vector perpendicular to ?. The boundary condition (3.13c) 
expresses that in the case of  specular reflection no tangential stresses are 
exerted on the sphere. This is what one would expect, since in a specular 
collision between a gas molecule and the sphere no transfer of momentum 
directed parallel to the surface takes place. (17) 

Thus it appears that the case of specular reflection does allow for a 
normal solution to satisfy the extended Boltzmann equation to order I/R. If  
one extends the expansion of the normal solution to second order, one runs 
into inconsistencies, exactly as in the diffuse reflection case. The fact that 
these inconsistencies show up only at order (l/R) 2 means, however, that the 
boundary layer effects show up only in the order (l/R) 2, and also that 
corrections to the boundary conditions (3.13) are of that order. 

One important  consequence of the fact that the normal solution of the 
Boltzmann equation breaks down near the surface of the sphere is that 
the normal solution cannot in general be used to directly determine the force 
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on the sphere. To see this, we use the fact that the drag force F(t) exerted 
by the gas molecule on the sphere at time t is given by 

F(t) = - f dr f dv mvTf(r, v, t) (3.14) 

This equation is easily understood by noting that TJ(r, v, t) is the rate of 
change of the distribution function due to collisions between gas molecules 
and the sphere. Then, by multiplying T f  by my and integrating over all r 
and v one obtains the total rate of momentum transfer from the sphere 
to the gas at time t. Now, since Tf(r, v, t) requires that f be evaluated at 
the surface of the sphere, and since the normal form of the distribution 
function is not a solution of the Boltzmann equation near the surface of  the 
sphere, it is clear that F(t) cannot generally be evaluated from (3.14) using 
only the normal part of  the complete distribution function. For diffuse 
reflection, in particular, one does not obtain the proper form of Stokes' law 
F -- -6~t /RV from (3.14) using the normal form fo r fg iven  by Eq. (3.1), but 
instead one obtains F = -47rr/RV. The discrepancy can be accounted for by 
noting that for diffuse reflection the boundary layer corrections tofN s are of  
order l/R, and these corrections are needed to obtain the proper form for 
Stokes' law.S For  the case of specular reflection, the normal solution of Eq. 
(3.1), when inserted in Eq. (3.14), does lead to the correct form F = - 4~r/RV, 
since the normal solution is correct to order (l/R) 2 for this case. 

In the following sections we show how one can formally determine the 
boundary layer part of the distribution function and use it together with 
the normal part of the distribution function to determine the correct form 
for the drag force on the sphere from Eq. (3.14) for small values of I/R. 

4. L I N E A R I Z A T I O N  OF T H E  E X T E N D E D  B O L T Z M A N N  
E Q U A T I O N  A N D  P R O J E C T I O N  O N  N O R M A L  M O D E S  

Since the normal solution alone does not satisfy the extended Boltzmann 
equation, we have to construct in some way the complete solution of the 
Boltzmann equation that: (1) reduces to the usual normal solution far from 
the sphere, (2) describes the boundary layer correctly, and (3) vanishes in the 
interior of the sphere. 

s There is no contradiction between this result and the usual, correct result derived from the 
Navier-Stokes equations,  which, in turn, follow from the Chapman-Enskog  normal solution. 
In the hydrodynamic derivation one considers the momen tum flux through a surface 
surrounding the sphere, but  outside the boundary  layer. The normal  solution is valid near 
this surface and correctly predicts the m o m e n t u m  flux. In Eq. (3.14) one considers the 
m o m e n t u m  transfer from the gas to the sphere. Here the normal  solution and the boundary 
layer correction both contribute to the m o m e n t u m  flux at the same order in l/R. 



352 Henk van Beijeren and J. R. Dorfman 

Ultimately we are interested in the drag force on the sphere, which we 
expect to be linearly proportional to the velocity of the sphere, provided the 
latter is sufficiently small. 6 In that case the extended Boltzmann equation can 
be linearized in the velocity of the sphere. This linearization allows us to apply 
a projection operator method in a fairly straightforward manner when we 
attempt to decompose the distribution function into a normal solution 
part and a boundary layer part. 

As before, the gas-sphere system is considered in a coordinate system 
where the sphere is at rest. In this frame the gas far from the sphere is in 
an equilibrium state with uniform velocity - V ,  where V is the velocity of 
the sphere in the laboratory frame. Hence we can write the distribution 
function of the gas particles as 

\2r/ exp - ]v + V(t)l 2 [W(r) + ~( r ,v ,  t)] (4.1) 

As before, n and kBfl are the equilibrium density and inverse temperature 
of the gas. The function �9 has to vanish as r ---, Go. It also must vanish for 
r inside the sphere, but we consider f and �9 as functions defined over all 
space. For later purposes it will be useful to write u? as the sum of an 
exterior and an interior part, 

U?(r, v, t) = | - R)~WXt(r, v, t) + | - r )qJ in t ( r ,  v ,  t )  (4.2) 

where in fact. wint= 0. Insertion of (4.1) into the extended Boltzmann 
equation (2.1) yields 

f flm'~ a/2 [ tim n ~ 5  ) e x p [ _ - ~ - l v  + V(t)l 2] 

x ~ + v.V - a(t). W(r, v, t) + v.VW(r) = J(f,f) + Tf (4.3) 

As the next step, (4.3) is linearized in V. We assume that q? is proportional 
to V and neglect all terms in (4.3) of quadratic and higher order in V, 
including a.(c~fi3V)~. Furthermore, (4.3) is divided by nq~, where q)(v) is 
given by (2.7). In this way Eq. (4.3) reduces to 

( ) 3 
+ v . V - L - T '  qJ(r,v,t)  

=-"flm[v'V(t)]+c~T'ai(~-fl-)(fl2 v2 ~) 

+ Bmv.V(t)[v. V W(r)] 

6 This means that the Reynolds number (V/c)R/I is small. 



Kinetic Theory of Hydrodynamic  Flows. I 353 

where T is given by (2.10) (2.11) and 

T '  = I-~0(v)]- 1T~0(v) 

:)J 
(4.5) 

and T' is defined in an analogous way. We drop the primes again since we 
always will deal with Eq. (4.4). The term with ~T~ acting on flmv2/2 2 3 
results from linearization of the actual Tdi about Td~(fl w =/3). The operator 
L on the left-hand side of (4.4) is the linearized Boltzmann operator, defined 
by (3.5) with C replaced by v and n(r, t) by n. Again, for mathematical con- 
venience we will assume that (4.4) also holds for the inside of the sphere 
(which is physically not true), but in the end we will keep only solutions 
with �9 = 0 inside. 

The solutions of (4.4) can be analyzed by separating �9 into a Chapman-  
Enskog normal solution part and a boundary layer part. The form of the 
normal solutions of the ordinary linearized Boltzmann equation is obtained 
by linearizing (3.1) about rap(v): 

J~s(r, v, t) = ncp(v)[1 + 6n(r,n t) +/~mv.u(r, t) 

+ ( ~ v  2 3) 6T(r, t) 6T(r,t) 

- �89 t) + O(V2)[ (4.6) + /~B(~)fvv 

Here 6n(r, t) and 6T(r, t) are the deviations of the local density and tem- 
perature from their equilibrium values n and 7". The functions A and B 
are determined through Eq. (3.4). It follows from the linearized Boltzmann 
equation that the fluid fields 6n, fiT, and u satisfy the linearized hydrodynamic 
equations with constant transport coefficients given by (3.9) with fixed /?, 
and they vary on a length scale large compared to the mean free path. 

The normal solutions (4.6) can be written in terms of the so-called 
hydrodynamic mode eigenfunctions of the operator - v. V + L. These eigen- 
functions depend on a wave number k, which is restricted to satisfy kl << 1, 
where l is a mean free path length. ~1~ In the limit k -~  0 the hydro- 
dynamic modes approach linear combinations of collisional invariants and 
their eigenvalues approach zero, at least proportionally to k. In three 
dimensions there are two shear modes, two sound modes, and one heat 
mode for each value of k, given respectively as ~1~ 

tlJkJ(r , V) = [exp(ik.r)](flm) 1/2 

• Iv-k1 j + iB(v2)(vv - �89 l j + O(k2)] (4.7a) 
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IV /Bm'~ 1/2 1 qJ,'(r, v)= I-exp(ik.r)][]_o'k~- ) (v.k,) + ~ ~mt~ 2 

cx ~ (flmv 2 - -  5) + o" B(t~2)[(u 2 - -  �89 '2] 

+ ~ A(v2)(v.k) + O(k 2) (4.7b) 

�9 kH(r, v) = [exp(ik-r)] (~mv - 5) + ik 

2 

In (4.7a), ~• and ~• are two unit vectors orthogonal to k and to each 
other. In (4.7b) and (4.7c), c = (~-Bm)-1/2 is the speed of sound, v = tl/nm is 
the kinematic viscosity, and D r = 2/nCp is the thermal diffusivity, cr is either 
+ 1 or - 1. The eigenvalues to order k a of shear modes, sound modes, and the 
heat mode, respectively, are - v k  2, - (~ ick  + �89 and - D r k  2, where the 
sound wave damping constant F = ~v + ~D r. Contributions to the hydro- 
dynamic modes of O(k 2) and to the hydrodynamic eigenvalues of O(k 3) 
are neglected consistently. There is a natural wave number k o, on the 
order of the inverse mean free path, above which the expansion of eigen- 
functions and eigenvalues in powers of k breaks down and hydrodynamic 
modes no longer exist. 

After introducing the inner product 

( f ( r , v ) l g ( r , v ) ) = f d r f d v ~ o ( v ) f * ( r , v ) g ( r , v )  (4.8) 

we find the adjoint of - v . V  + L to be v.V + L, since both v.V and 
L commute with q~(v). Since the action of v. V on the hydrodynamic modes 
(4.7) is simply a multiplication by ik.v and L is a real operator, one sees that 
the right eigenfunctions of v. V + L (which are the left eigenfunctions of  
- v . V  + L) are obtained as 

~pkT(r, v) = [exp(ik.r)]{[exp( - ik .r)]Wk~(r, v)}* (4.9) 

Now if mp(v)Ve is a solution of the linearized Boltzmann equation, the 
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normal part of �9 is obtained by a projection onto the hydrodynamic 
modes, i.e., 

1 
fk dk ~ Iq~k~(r, V))(~pkY*(r, v)[q~(r, v, t)) (4.10) Pq~(r, v, t) - (27z)3 < ko 

and 7 runs over the fi')e types of hydrodynamic modes. The form of this 
projection operator can be simplified appreciably. First it is possible to 
perform a rotation among the hydrodynamic modes for one given value of 
k and replace them by a "density mode," a "temperature mode," and three 
"velocity modes." These are given as 

Wk" = exp(ik.r) (4.1 la) 

udkr = [exp(ik.r)](~)a/z[�89 _ 3 + ik.vA(v2) + O(k2)] (4.1 lb) 

udk" = [exp(ik.r)](t~m)l/2[v + ik.B(vZ)(vv - �89 + O(k2)] (4.1 lc) 

The corresponding "left modes" ~ok r and %" are obtained by replacing 
i by - i  in the brackets in (4.11b) and (4.11c), while ~ok"= q~k"- These 
functions are no longer eigenfunctions of the operator - v .  V + L, but they 
do span the space of normal solutions just as well, A further simplification is 
obtained by actually performing the integrations over k in (4.10). These 
integrations give rise to smeared-out g-functions, e.g., 

a f l f dk exp(ik.r) f dr, exp(_ ik . r ,  ) (2rc)3 dk Iq'k")(~Ok"l -- (27r)3 < k0 

j 'dr '  kko(r -- r') (4.12) 

The smearing out of the a-function is due to the large-k cutoff in the 
integration and takes place over a volume of diameter ~ 1/ko ~ l centered 
at r. As long as the projection operator acts on functions which are smooth 
on the length scale of the mean free path, the integrals over the Ako functions 
can all be done, which reduces the projection operator to 

P = I~"(v))(~'"(v)[ + ]q~r(v)(~dT(v)j + JV"(v)). (~(v)l  (4.13) 

The parentheses now denote an inner product in velocity space, defined by 

(f(v)]g(v)) = f dv ~0(v)f(v)g(v) (4.14) 

Note that the complex conjugate of f is not taken. Furthermore, the 
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"functions" f and 9 may contain operators, such as a spatial gradient. The 
�9 's in (4.13) are given as 

�9 "(v) = 1 (4.15a) 

Vr(v) = (2)l/z[�89 _ 3 + A(vZ)v. V + ' " ]  (4.15b) 

�9 "(v) = (/3m)l/2[v + B(v2)(vv - �89 + ".'] (4.15c) 

One easily checks that the linearized normal solution (4.6) can be written in 
terms of these functions as 

~Ns = [l~") 6n/n + (3)l/2[It-lJ7) (~T/T + (flm)U'2l~u).li] (4.16) 

It is clear that application of P given by (4.13) to UdNs indeed reproduces the 
normal solutions. The large-k cutoff in (4,12) implies, however, that (4.13) is 
only valid when acting on functions with not too steep gradients; this means 
that the typical length of the gradients must be >>l. 

If we now make the separation 

�9 (r, v,t) = P~( r ,  v, t) + P l~( r ,  v, t) (4.17) 

then (4.4) can be replaced by two coupled equations for P ~  and p tp, respec- 
tively, 

= P T P •  / ~ - r  1 ~  (4.18a) 

P 0 •  tP 

- - - P • 1 7 7  /3w~-/3 ( ~  v2 - 2 ) ]  (4.18b) 

where we used that P~(v. V - L)P = P(v. V - L)P• = 0. Equation (4.18b) 
can be formally solved as 

PlY(r,  v, t) 

.fl dz e x p [ - P l ( v "  V - L - T)P_z] 

+ e x p [ -  Pz(v. V - L - ~?)P•177 v, 0) (4.19) 
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Although this solution is of  little use for a detailed numerical description 
of  the boundary layer, it does provide some qualitative information on its 
structure. The exponential operator on the right-hand side must decay to 
zero on the time scale of  the mean free time. This has been shown for 
the operator  (19) e x p [ - P = ( v . V -  L)P• The addition of P I T  takes into 
account the influence on this propagator  of  collisions between gas molecules 
and the sphere during their propagation and it is hard to see how this 
could prevent the exponential decay. As a consequence, the second term on 
the right-hand side may be ignored after a few mean free times. In the 
first term on the right-hand side the exponential acts on a source term which 
is confined to the surface of the sphere (or at least to the close vicinity 
thereof; see the next section). As a result the kinetic boundary layer must be 
confined to a thickness of  a few mean free paths around the surface of  the 
sphere. 

Furthermore,  if we restrict ourselves to the case where �9 and V vary only 
on a hydrodynamic time scale, we may replace ~ ( t  - z) and V(t - z) by ~( t )  
and V(t), and we may extend the upper bound of the t integration to ~ .  
Under these approximations,  the equation for the boundary layer part of  
becomes 

P•  v, t) = [P l (v .  V - L - T )P•  ~ 

x P• 
Substitution into (4.18a) yields 

P(f f t  + v . V -  L)P~=PTPW-P'Iflmv.V(t) 

where 
(4.21) 

= T + T[P• V - L - T ) P •  x~f (4.22a) 

= T + T[P• V - L - T )P •  (4.22b) 

We will separate (4.21) into an equation for the outside solution, far 
from the surface of the sphere, and an equation for the sources that generate 
this outside solution. Then P T ,  or equivalently the hydrodynamic boundary 
conditions at the surface of  the sphere, can be determined to lowest order in 
l/R. Before doing so, however, we first make a critical examination of  the 
projection operator introduced by (4.10) and (4.13). 

5. THE P R O J E C T I O N  O P E R A T O R  R E C O N S I D E R E D  

The projection operator onto hydrodynamic space as introduced in 
(4.10) and (4.13) has some unsatisfactory features that are a consequence 
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of the cutoff on the k integral in (4.10). The main problem can be outlined 
as follows: As discussed in Section 2, the linearized, extended Boltzmann 
equation (4.4) can be interpreted as an ordinary Boltzmann equation with 
source terms given by T"-F-T ' ( f l rnv .V +- ' . )  in (4.4). Generally, the 
physically interesting solution ~P of the extended Boltzmann equation (4.4) is 
an exact solution of the ordinary Boltzmann equation outside the sphere. 
It is identically zero inside the sphere, it has a source term at the boundary 
of the sphere, and it has no additional sources anywhere else. The boundary 
source may be considered to generate ~ ,  and usually it will generate both a 
hydrodynamic and a nonhydrodynamic contribution. The latter should decay 
to zero within a distance of a few mean free paths from the boundary;  hence 
far from the sphere the complete solution is of  the hydrodynamic form (4.16). 
Intuitively one would expect that a decomposition of the complete solution 
into a hydrodynamic and a nonhydrodynamic part would yield the hydro- 
dynamic solution inside the boundary layer simply as the analytic continua- 
tion of the hydrodynamic solution [Eq. (4.16)] far from the boundary. 
Moreover, both the hydrodynamic and the nonhydrodynamic solution inside 
the sphere ought to vanish. 

Now if one looks at what the projection operator defined by (4.10) 
actually does, it turns out that hardly anything of this intuitive picture is 
realized. Due to the cutoff on the k integration, whenever the projection 
operator acts on a source term it smears out the a-function 6(r - R) over a 
layer of a few mean free paths thick on either side of the surface of the 
sphere. Similarly, the hydrodynamic solution generated by this projection 
operator does not jump discontinuously from some nonzero value just outside 
the sphere to zero just inside the sphere, but it varies smoothly through the 
layer of sources from the outside hydrodynamic solution to zero far enough 
inside the sphere. This solution is not the natural analytic continuation of 
the solution far outside the sphere, nor is it identically zero inside the 
sphere, nor is it free of sources everywhere except at surface of the 
sphere. Of course these unphysical features are compensated for in the 
nonhydrodynamic solution. The latter exactly cancels the hydrodynamic 
solution inside the sphere; it contains sources exactly canceling the sources 
of the hydrodynamic solution everywhere except at the surface of the 
sphere; and it contains a contribution outside the sphere canceling the 
difference between the hydrodynamic solution and the analytic continuation 
of the solution far away. However, one cannot avoid the conclusion that in 
the neighborhood of the surface of the sphere the decomposition into a 
hydrodynamic and a nonhydrodynamic part as generated by (4.10) is of a 
very unphysical nature. 

There seem to be two ways out of these problems. The first one is to 
look at the system on a gross scale, that is, on a scale where all distances 
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are measured on a length scale much larger than the mean free path. Under 
these optics the kinetic boundary layer becomes part of the boundary of the 
sphere and all detailed information about what goes on there is lost. The 

operator P T P  is to be interpreted as a "generalized particle-sphere collision 
opera tor"  which describes the hydrodynamic source resulting from the 
hydrodynamic solution at the surface of the sphere. Only a global knowledge 

of the action of P ~ P  is needed to calculate the hydrodynamic solution 
around the sphere and the drag force exerted on it. This program is worked 
out in Section 7. 

Here and in Section 6 we discuss the other option. That is, we consider 
T to be given by linear combinations of functions which vanish as r - *  oe 
and which satisfy the linearized Boltzmann equation everywhere except 
perhaps at the surface of  the sphere, where they may have discontinuities. 
These functions may be considered as being solutions of the equation 

(~/Ot + v.  V - L )h  = 6(r - R)g(r, v, t) 

for an appropriate function g(r, v, t) to be described further on. The right- 
hand side of the equation will be interpreted as the source generating h. 
It seems reasonable to construct q~ from such solutions, because q~ is really 
generated by sources at the surface of the sphere, as we see in Eq. (4.4). Now 
we will see if it is possible to decompose the set of  all functions of  this 
type into two subsets, one of  which we can identify as a hydrodynamic set 
and the other as a nonhydrodynamic set. v 

If one considers solutions of  the Boltzmann equation driven by a 
boundary source, it is not possible to distinguish hydrodynamic and non- 
hydrodynamic solutions by their temporal behavior, because each of these 
solutions follows the time behavior of the source. The two types of solutions 
can be distinguished, however, by their spatial behavior. For the case of the 
drag on a sphere discussed here, it is sufficient to consider only sources 
varying on a hydrodynamic time scale, since the time scale will ultimately 
be determined by the time on which V(t) varies. Then the nonhydrodynamic 
solutions should spread out from the boundary at a speed on the order of the 
thermal velocity ( kBT/m)  1/2 and decay exponentially on the timescale of the 
mean free time. This will manifest itself as an exponential spatial decay on 
the length scale of the mean free path. The hydrodynamic solutions, on the 
other hand, should decay only with an inverse power of time as they move 

7 In carrying out the decomposition, we will have to consider solutions to equations of the 
above type that do not vanish inside the sphere. It may seem odd at first to consider these 
solutions, since tp must be zero inside the sphere. It will turn out to be advantageous to 
decompose the complete source of �9 into a number of contributions, each of which may 
generate an inside solution. Only in the end will the sum of all inside solutions become zero. 
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out and this will result in a spatial decay with some inverse power of the 
distance to the origin. 

To obtain the hydrodynamic solutions, we start by Laplace-transform- 
ing the linearized Boltzmann equation to 

(z + v . V  - L ) q  j = O, r # R (5.1) 

where �9 is the Laplace transform of q~(r, v, t). In (5.1) we neglect the 
transient solution connected with the initial distribution function. Now Eq. 
(5.1) can be used to obtain z-dependent linearized hydrodynamic equations 
by means of the Chapman-Enskog  procedure as indicated in Appendix A. 
Then we will define hydrodynamic solutions of  Eq. (5.1) to be solutions of  the 
form (4.16) with f in, f i T ,  and u given by solutions of  the linearized z- 
dependent hydrodynamic equations derived in Appendix A. 

I f  one then assumes that the set of  solutions for given z [with 
z << (mean free t ime)-1]  can be completed by adding a set of  exponentially 
decaying nonhydrodynamic solutions, a unique decomposition of an arbi- 
trary solution into a hydrodynamic and a nonhydrodynamic part  ought to 
be possible. Then the projection operator P onto hydrodynamic space must 
be defined such that it reduces any solution to its hydrodynamic part. In 
principle one could construct P in the following way: Suppose that for 
given z, { ~ ( r ,  v, z)} is a complete set of  hydrodynamic and nonhydrodynamic 
solutions of  (5.1). Then one should construct a set of  functions {q~(r, v, z)} 
such that (q~,(r, v, z)lqJ~(r, v, z)) = 6~p, with the inner product given by (4.8). 
The projection operator then would assume the form P = ~],.~ bql~)(~[, 
where the sum over e is restricted to the set of hydrodynamic solutions. 
In fact, we cannot obtain this explicit form of the projection operator 
because we do not know the nonhydrodynamic solutions, and hence cannot 
construct the set {~}.8 Yet there is no problem in determining the action 
of P on an arbitrary solution of the Boltzmann equation. In the case we 
were considering we can fruitfully make use of  the following tensorial 
property:  if the source occurring in the equation 

(~3/c~t + v .  V - L - T ) W  = S cS(r - R )  

s Because of the possible discontinuities at the surface of the sphere, and because both the 
hydrodynamic and nonhydrodynamic solutions are defined for the same z, the nonhydro- 
dynamic solutions of the adjoint of Eq. (5.1) are not orthogonal to the hydrodynamic solu- 
tions of Eq. (5.1), and vice versa. For the special case of the Kramers problem of the 
flow of a gas past a plate and in the BGK approximation, both the hydrodynamic and 
nonhydrodynamic solutions can be constructed explicitly) 6) There it can be seen that the 
nonhydrodynamic solutions decay exponentially, and that the orthogonality relations are quite 
intricate. 



Kinetic Theory of Hydrodynamic  Flows. I 361 

is such that S has the form 

S = cos(/O)f~l)(vr, vo 2, v 2, r) + sin(/O)f~Z)(vr, vo 2, v 2, r)v  o (5.2) 
where 

cos | = 2~. ~, v o = v. Ib, O = - f  x (f x ~)/sin O 

a n d f  (~) a n d f  ~2) are arbitrary functions of their arguments, then the resulting 
tt' is of the same functional form. This can be seen by solving the equation 
for q~ in terms of  the source S using the operator (v. V - L - T) -  1. Then 
if one uses the representation of v. V in spherical coordinates, as well as the 
fact that both L and T are invariant under rotation about the origin, the 
result follows. In the case of (4.4) with flw = fl and the z-axis along v, the 
source term is of this form with l = 1. 

This means that of  all the different hydrodynamic solutions that Ibllow 
from (A.6), (A.7), (A.9), (A.15), (A.16), and (A.19) by substitution of the 
hydrodynamic fields obtained there into (4.16), only those for which l = 1 
can actually appear in the case of flow around a sphere we are considering 
here. To be explicit: For a given eigenvalue z, the projection operator P 
projects onto a space spanned by three linearly independent outside distribu- 
tion functions O1,02 ,  �9 3 and three linearly independent inside distribution 
functions q~4, 05, 06, all of  the form (4.16), with hydrodynamic flow fields 
that are obtained from Appendix A as 

~  - 

2 F 2 -- 6 F-7~J Z 

F 3Rp2 (e (e-r)/p - 1) + d R-r)/~ - 

- L  r W 

+ _  e(R_r 3 1 ~ I  q ^ ^ ^ )  
2 }-2 - ~ r 3 p j ( z ' r ) r j  (5.3a) 

an _ W ( r ) f l m v u o  R {" R 1 R 2 1 R 3 ~ .  ^ 
n ~ \1 + -- + - - -  + ~ y ) Z - r p  2 p2 

6 T  
- 0  

T 

R 3 . 

~ 2  : u = W ( r ) u  o ~3 [z - 3(~.f)f] 

~n R 3 
n - W ( r ) f l m v u o  r ~  ~" f (5.3b) 

6T 
- - ~ 0  
T 
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R 2 ( F  (R r)~r {'l 
dPa" u=-W(r)Dr-~u~ke - / ~ 7 + ! ) -  'rl' 

- Ie{R-Om(f2 + 3 + ! )  -- ~ ] ( ' " ) ' }  

~4: u = [1 - W(r)]uo~ 
6n r 
n - [1 - W(r)]flmvuo pg(z'r) 

6T 
- - ~ 0  T 

R~_[3R + 1 + 

5n 
n 

aT 
T 

6n 

~6 : 

L \ 2r q 2r 2 

-t-(1 q-R)[e(r-Rl/~ 3p2 3p3"~ 
2r 2 + ~r 3 ] 

_ e-e+R)/o(P 3P 2 3p3\q . 

- 0  

2 r 
3 [1 - W(r)]flmvuo ~ (~.f:) 

u =  - [1 - W ( r ) ] ~ -  e<~-R~/o ~5  

- e - ( ' + R ) / ~  + ~ T -  + ( z ' r ) r  

(5.3c) 

(5.3d) 

cr3) 
7 ~ e-O'+R)/r~ 

3o -2 3o -3` ] 
- -  r -y+ r 3 ] 

(5.3e) 

3 T  3 cr 2 

- T - 4 [1 - W ( r ) ]  r-R 

x [e"-R)/~(1-  ra-)+ e-~'+R)/~(1 + ~)](~-~) 

(5.3f) 
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Here u o is an arbitrary velocity; p = (Y/z) 1/2 and a = (Dr/z)l/2; z is the 
Laplace variable; and cSn and 6T are deviations of the density and tempera- 
ture from their equilibrium values. Furthermore, we have assumed that the 
typical timescale t H for variations of fluid fields is of the order t ,  ~ R2/v, 
where R-  ~ is the characteristic strength of a gradient. In this approximation 
transient sound mode phenomena may be neglected. For a discussion of 
Brownian motion in the case where the latter are also included see Ref. 20. 

Generally, we may say that in the system we are considering, the hydro- 
dynamic part of  the Laplace-transformed distribution function has to be of 
the form 

6 

P ~  = ~, 2i+ i (5.4) 
i=1 

In the particular case of interest to us here, the coefficients 2i can be 
determined from the strengths of the currents of momentum, energy, and 
particles in the radial direction. These currents are defined microscopically as 

Jl = m(v'r) 2, J2 = m(v.O)(v.f)  
(5.5) 

J3 = �89 J~ = v . f  

and their strengths when the gas is described by a distribt/tion function q~ 
are given as 9 

ji(r) = (J/(v)qJ(v, r))  (5.6) 

The expectation value (-. .)  is defined by ( f (v ) )  = n ~ dv (p(v)f(v). 
As we show in Appendix B, both outside and inside the boundary layer 

the radial currents are determined, at least to leading order in the Knudsen 
number l/R, by the hydrodynamic part of the distribution function alone. 
Then we may write that 

6 

(JtCP) = ( J k P q ? ) =  ~ 2,(Jk40i) (5.7) 
i=1 

Apparently we have four equations here with six unknown constants 2i, but 
in fact these equations fall into two independent sets of equations because 
~1, ~)2, and ~)3 are nonzero outside the sphere only and q)4, ~)5, and q)6 
inside the sphere only. These equations are 

3 

Z 2i(Jk~i) ~- ( J k ~ )  r > R ( 5 . 8 a )  
i=1 

6 

2i(Jk4),) = ( J k ~ )  r < R (5.8b) 
i=4- 

9 Due  to the rotat ional  symmetry,  the strength of  the current  4 = m(v.~b)(v-f) is always zero. 
Here ?, O, ~b form a set of  or thogonal  unit vectors. 
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Either set of four equations contains only three unknowns. However, since 
PqJ has to be of the form (5.4), one of the four equations in each set 
must be implied by the other three. As we shall see, it is advantageous that 
even a determination of the Ji inside the boundary layer can be used to 
determine the )~i- 

Having answered the question of how to determine the action of the 
hydrodynamic projection operator on an arbitrary distribution function, we 
are faced with the harder problem of how to determine its action on a source 
S. This problem can be attacked as follows. As discussed in Section 2 for 
the nonlinear equation, the source of an outside solution of the equation 

(z + v. v - L)q '  -- S (5.9) 

has to satisfy the identity S = ~(v . f )  6(r - R). Similarly the source of an 
inside solution has to satisfy S = - ~ ( v . ~ )  ,~( r -  R). Hence a source of a 
general solution of the form (4.2) must satisfy 

s = (q~ext.  q , % ( v . ~ ) 6 ( r  - R )  (5.10) 

"Dividing by"  (v. f) 6(r - R), one obtains 

1 
t~Jext __ ~ J i n t  = S, r = R (5.11) 

(v-f) ch(r - R) 

This equation reformulates (5.9) as a boundary value problem" What is the 
solution of the linearized Boltzmann equation which decays to zero at infinity 
and has a discontinuity at the surface of the sphere given by the right-hand 
side of(5.11)? Here immediately questions of existence and uniqueness occur. 
We do not know very much about the problem of the existence of a solution 
of (5.11) for an arbitrary given S. If one picks a q,r and qjint at the 
boundary satisfying (5.11), one can in principle construct qa everywhere by 
integration of the linearized Boltzmann equation along characteristics (lines 
parallel to v), but there is no guarantee whatever that the solution thus 
obtained will decay to zero at infinity. Of course, given only q , ~ x t  qj~.t, 
there are infinitely many ways to pick qjex~ and ee~nt, but whether there is 
always at least one way which leads to a solution satisfying the boundary 
conditions at infinity is impossible to tell. However, the sources we have to 
deal with are always of a physical nature (of the type Tq'), and for that 
reason we will assume they will not cause mathematical difficulties of the 
type sketched above. More can be said about the question of uniqueness. 
Suppose q' and q' + Aq? both satisfy (5.9) for a given source S. Then A~ is 
an eigensolution of the homogeneous linearized Boltzmann equation with 
eigenvalue z. Any solution of the linearized Boltzmann equation which is 
not driven by any sources will eventually decay to zero. Hence if any such 
solutions are present initially they will die off after a sufficiently long time. 
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In (5.9) these transient solutions would be generated by the initial value term 
resulting from the Laplace transform of the Boltzmann equation. But we 
have omitted this initial value term just because we were not interested in 
the transient phenomena, but only in the distribution function generated by 
the motion of the sphere. Therefore we suppose that the solution of (5.9), 
if it exists, is unique. 

After this disgression on the mathematical properties of (5.9), let us 
return to the question of how to determine PS. Assume first that for S the 
solution �9 of (5.9) can be constructed satisfying formally 

CP=(z  + v , V - L ) - I s  (5.12) 

Then �9 can be decomposed into ~ -- P ~  + (1 - P ) ~  and, with the aid of 
(5.10), S can be decomposed accordingly as 

S = (u  t~(F - -  R )  p{@ext  __ ~int}  

+ (v.?) 6(r - R) (1 - p){~xt _ qjl.t} (5.13) 

(v.f) 6 ( r -  R) P{q? ~xt- ~i.t) is the source of a purely The source term 
hydrodynamic solution PqL To see this, one needs only to consider Eq. (5.10) 
and realize that Pq '  is by itself a solution of the linearized Boltzmann 
equation. Similarly, (v-f) 6(r - R) (1 - p){q~e~t _ q~int} is the source of 
purely nonhydrodynamic solution. 

The source (v.f) 6(r - R) p{CIJex t  - -  t~flint} is defined to be the projection 
of S onto hydrodynamic space. Combining (5.12) and (5.13), one can write 
P S  formally as 

P S  = (v.f) 6(r - R) p{~e~t _ ~ in t )  

= (v.f) 6(r - R) 

• P{[(z + v-V - L)-~SJ ex~- [(z + v.V - L) -  1S] int} (5.14) 

The formal prescription given above for the construction of P S  given S 
cannot be followed as such in practice, because in general the solution of 
(5.12) (construct ~ ,  given S) is not known. However, although the complete 
solution is not known, its hydrodynamic part can be obtained, at least to 
leading order in l/R, by using the property of the radial currents given in 
Eq. (5.8). 

Given S, one can use Eq. (5.11) to determine t~r  q, int, the discon- 
tinuity of q' at the surface of the sphere. Then Eq. (5.6) can be used to 

"int compute j~xt -J i  , the discontinuity of the radial currents at the surface 
of the sphere. Next, since to leading order in l /R the radial currents are deter- 
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mined by the hydrodynamic  part  o f  the distribution function, even inside 
the boundary  layer, we can write 

3 6 
j~xt __ j i in t  (jip{~ext ~int}> = 2 ")~'J<Ji~)J > -- 2 2J<Ji6J> (5. t5) 

/=1 j=4 

Hence the values of  ]7 xt -.]i. nt obtained from a given source S can be 
used to find the coefficients 2j if one expresses PqJ generated by PS by the 
way of  (5.4). The hydrodynamic  par t  o f  S then becomes 

PS=(u ~ i=4~ )~i~i) (5.16) 

in accordance with (5.14). 
One problem does remain here. Since there are only four different 

radial currents and there are six independent  hydrodynamic  distribution 
functions ~)~ (just at the surface both  inside and outside solutions come into 
play), the coefficients cannot  be determined uniquely. In the case of  the 
flow around a sphere which we are considering, this problem can be overcome 
by using the fact that  in the end the distribution function inside the sphere 
has to vanish. l~ 

The details o f  all these calculations, as well as a discussion how to deal 
with the nonuniqueness  of  the 2~, are given in Section 6. 

6. S O L U T I O N  OF T H E  E X T E N D E D  B O L T Z M A N N  E Q U A T I O N  

Having redefined the projection operator ,  we are in a position now to 
explicitly solve the extended Bol tzmann equat ion to leading order in l/R. 

We start by Laplace- t ransforming (4.21), 

P(z + v.V - L)P6? = PTP~P - PTfim[v.V(z)]  (6.1) 

where we have set /3~ =/3,  dropped the initial condit ion term P~?(0), and 
where P is now the projection opera tor  defined in Section 5. It is wor th  
mentioning that  (z + v .V - L)PCP is equal to zero everywhere except at the 
surface of  the sphere, so that  the projection opera tor  acting on this com- 
bination f rom the left is the type of  projection which acts on a source. 

~o One might ask if 2~, 2 5 , 2 6 cannot be set equal to zero immediately, since we expect 
that PqJ as well as q' vanishes inside the sphere. However, an arbitrary source S will in 
general produce a nonzero inside solution; hence if the source of P~ is considered as 
consisting of different contributions, each of these may produce an inside solution and only 
in the end will the sum of all inside solutions cancel. 
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Equation (6:1) can be rewritten as 

= - {P(z + v.V - L)P} -lqfflmv.V(z) (6.2) 

where the inverse operator  {P(z + v.V - L)P} -1 is such that when it acts 
on a hydrodynamic source PS it produces the hydrodynamic solution for 
which PS is the source, 

Let us first investigate the structure of  the terms on the left-hand side 
of  this equation : P ~  must be of  the form (5.4). We will find it convenient 
to represent P ~  by a six-component vector with components  2 i. In our 
notation we will use the symbol P ~  to denote this vector as well as the 

distribution function (5.4). The operator PTP transforms any hydrodynamic 
distribution function into the source of  some other hydrodynamic distri- 
bution function. I f  it acts upon a distribution function of the form (5.4), 

2i+i, it generates a source of the form (5.16), 

(v.f) , 5 ( r -  R) (i~=l ,i~i - i~=4 71"i) 

for some set {7i}- There are six linearly independent distribution functions 
of  the form (5.4). There are also six linearly independent sources of  the 
form (5.16). I f  one chooses a basis (S1, $2 ..... $6) for these sources, it follows 

that PTP can be represented by a 6 • 6 matrix, the components  of  which 

describe the amount  of  Si generated by PTP acting on ~)f 
How should the basic sources $1,... , $6 be chosen ? The choice suggested 

by (5.16), to take the sources (v.f) cS(r - R)4)i, is not the most practical one. 
As discussed in the preceding section, the action of  the projection operator 
P on an arbitrary source S is to be determined from the discontinuities 
in the radial currents, given by 

~5(r - R) (jext __lint) = ( J~[1 / (v ' f ) ]S)  = (/7i S)  (6.3a) 

Moreover,  it follows from Eqs. (5.7) and (5.11) that 

r - -  R )  ( j ex t  _ j l n t )  ~_ 6 ( r  - -  R )  ( J i P ( ~  TM - -  k ~ i n t ) )  

= (.l~[1/(v.f)]PS) = (niPS) (6.3b) 

where the densities n i are defined as 

na = my-f,  n2 = my.O,  /73 -~ mY2~ 2, /'/4 = 1 (6.4) 

The hydrodynamic distribution function generated by PS is a distribution 
function of the form (5.4) that exhibits precisely the discontinuities in the 
radial currents following from (6.3). PS itself is obtained from (5.14). Now, 
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as mentioned in Section 5, one is confronted with the problem that the 
discontinuities in the radial currents do not uniquely determine the hydro- 
dynamic part of the distribution function generated by S. The reason is that 
there are six independent functions ~i and only four independent radial 
currents. The resolution of this difficulty is simplified by passing to a 
different basis for the set of hydrodynamic distribution functions, 

% = +,  + (1 + �89 (6.5a) 

~2 = q)2 - 2~4 (6.5b) 

~II3 = ~)3 - -  Dr(2/a + R/0"2)(~r (6.5c) 

qJ4 = ~)4 (6.5d) 

CPs = ~5 + clUdl + c2~2 + c3qQ (6.5e) 

k]~6 = ~6 -1" Cak~l'/1 + C5~5 + r + C7~4- (6.5f) 

with coefficients ct ..... c7 given by 

5 R 5 5 p 5 p 3 // 5 R 5 15 p 5p 2 
- -  -~- + or- e -  2R/p 

q 12p 6 4R  2 ~  ~ 12p 3 4 R R 2 ( o)[l 
1 p 1 + - ~ +  R2 + R3 C2 - -  6 R -R 2 R 

+ e-2R/~ 1 3 p 2  2 R 3p2R 2 ~-~)]  

C3 

{ c 4 = - 3 z R  - 1  +-4--p2 R 2 + R 3 R r 

( Ar-e - 2 R / a  1 + ~ +  R2 ) Rzjj 

3o .2 60 .3 6o -4 ( 20- 2o-2"~ 30-21 
R2 + R3 R, t + e  -2R/~ 1 + ~ - + - R 2 - ] ~ - j  

[ ( 2R RZ'~l-' x 4Uo 2 + - - +  a ~ 2 / ]  

5p 3) 
2 ~  
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30-[ 
c 6 = ~  1 - - -  

_ 3  z0- I 
cv 2 HoC 2 

2a 2a 2 ( 2 a 2 a 2 " ~ 7 / 2 R R 2 )  ~ 

7 
I R  2 go- 20 -3 2a'* -2R/o'( 2a 20"2~ O "2 ] 
3 0- 3 3 R ~3 -1- ~ - - -  6' 1 -1-~-~-  R 2 / ~  2- 

The ~i differ from the ~i in two respects: First, an amount (b 4 has 
been subtracted from +~, +z,  93 with the aim of obtaining a vanishing 
discontinuity j]xt _ j i l t  for qSl, q'2, and qJ3- This simplifies some of the 
calculations. Second, q's and ~t/6 have been defined in such a way that the 
discontinuities j~xt _ jiint in all four radial currents vanish. It is to obtain this 
goal that one has to choose the coefficients c~ ..... c7 in such a complicated 
way. Suppose now one wants to use the values of the discontinuities in the 
radial currents given by Eqs. (6.3) to determine the distribution function 
generated by a hydrodynamic source. The distribution function must have the 
form 

6 
= ~ 2i~ i (6.6) 

i=1 

while the hydrodynamic source must have the form 

6 
S = ~ 2i(v.~) 6(r - R) (~p* - ~i n )̀ (6.7) 

i=1 

Then the coefficients 21 ..... 24 are completely determined by the discon- 
tinuities in the radial currents, but the coefficients 25 and 2 6 a r e  completely 
undetermined. In other words, from the coefficients given in (6.3) we can 
always find how much of  the distribution functions q~ .... , q~4 is generated 
by a given source S, but how much q~5 and ~6 is generated remains completely 
unknown. 

Because of  this distinction between q~,..., q~4 on the one hand and 
6d 5 and q'6 on the other hand we decided to choose our basic hydrodynamic 
sources in the following way: $1 ..... S 6 are sources satisfying 

(n~Sj) = cS(r - R) b o .~(O), i = 1 ..... 4 (6.8) 

4 
{P(z + v. V ~ L)P}- IS; = ~, q~Bj~, i = 1 ..... 4 (6.9) 

j= l  

S, = (v.f) 6(r - R) {q,~x~ _ qj~,t}, i = 5, 6 (6.10) 

In (6.8),~.(O) is defined as f l ( |  =f3(O) =J4(O) = cos O and f2(| ) = sin | 
The appearance of these factors in (6.8) is a consequence of (5.2) with 
l = 1 and of  (6.4). The meaning of (6.9) is that S 1 ..... S 4 have been chosen 
such that they generate distribution functions which are linear combinations 
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of q~l ..... q~4 exclusively and contain no components along q~5 and q%. As 
yet the coefficients Bji are unknown. From (5.11)-(5.13) and (6.10) one 
obtains 

( z + v . V - L ) - ~ S i = [ P ( z + v . V - L ) P ] - ~ S ~ = C P ~ ,  i = 5 , 6  (6,11) 

in other words, S 5 and S 6 have been chosen to be the exact sources of q~5 
and q~6. From (6.8) and the fact that to leading order in l /R the radial 
currents are determined by the hydrodynamic solutions and that P S  = 
~6=1 7eSi, it follows that the hydrodynamic projection of a given source S 
is of  the form 

4 1 
P S  = ~1 6(r - R)f~(| ( n l S ) S ,  + ~ ?jS i (6.12) 

i= j = 5 , 6  

where Vs and ?6 are undetermined constants. 
With the aid of (6.12) one can formulate the matrix representation of 

PTP. Let A u denote the amount of Si generated by P T P  acting on q~j. Then, 
using (6.3b) and (6.8) we find for i ~< 4 that 

6(r - R)  f i ( O ) A  U = (rliTCIJj), i = 1 ..... 4 (6.13) 

whereas Aij cannot be obtained by our methods for i = 5, 6. A complete cal- 

culation of the matrix elements {ni~ q~j> for a given particle-sphere collision 

operator T is usually not possible, due to our lack of knowledge about what 
goes on inside the kinetic boundary layer. However, the general form of 
these matrix elements as a function of  the hydrodynamic flow fields occurring 
in ~d~ can be obtained fairly easily. In Appendix C we have worked out 

matrix elements between the densities nl defined in (6.4) and T acting on an 

arbitrary hydrodynamic solution ~ss  of the form (4.16). For T we considered 
the cases that T is either the diffuse reflection operator or the operator T~ 
defined in (2.11) corresponding to the Maxwell reflection model. The results 
are of the general form 

(n lT~Ns)  = --n 6(r -- R) [21(u(+).~) + 22 6T(+) /T]  

(n2TqJ~s) = - n 6(r - R) )~3(u ~ +). O) 
(6.14) 

(n3Tt~Ns) = n 0(r -- R) [)~4(u(+}.r) - ~t 5 6T~+I/T] 

<n f i :eV~> = 0 

where the superscript ( + )  denotes that for the functions behind the &function 
one has to take the limit as the surface of the sphere is approached from 
the outside. In the case of diffuse reflection 21 ,..., 25 are unknown constants 
depending on the structure of the boundary layer, and, to leading order, 
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independent of  the Knudsen number l/R. In the case of  the Maxwell reflection 
mechanism one has, for e of  order l/R, 

23 (~.) = - e(2~fl/m)- 1/2 (6.15) 

Furthermore, 22, 24, and 25 are also proportional  to ~ in that case, but 21 
remains independent of  this parameter.  The matrix elements A u with i ~< 4 
can be obtained simply from (6.14) by substituting for the flow fields the 
values occurring in ~ j .  However, we postpone this calculation. We still 
remark that in spite of  the occurrence of  several unknown constants in 
(6.14) we will be able to calculate the distribution function ~ around the 
sphere to leading order in l/R. 

For a further evaluation of the second term on the left-hand side of  
(6.2) we also need to know the action of the operator [P(z + v. V - L ) P] - 1  
This operator acts on a hydrodynamic source of the form 

6 
S = ~ 7iSi (6.16) 

and it generates a hydrodynamic distribution function of the form (6.6). 

Hence it can be represented, like the operator PTP, by a 6 • 6 matrix. This 
matrix will be called B. It is defined such that B u is the amount  of  ~i  
generated by the source Sj or 

6 
[P(z + v.V - L)P]-IS~ = ~, CPjB~i (6.17) 

j = l  

The notation used in (6.9) anticipated this definition. From the discussion 
below Eq. (6.10) it follows that B~ = 0 f o r j  > 4 and i ~< 4. From (6.11) it 
follows furthermore that Bu = & u for j > 4. Hence B factorizes into a 4 x 4 
matrix B* with i , j  ~< 4 and two 1 x 1 unit matrices B55 and B66. The 
elements of  B* are obtained by multiplying (6,9) by P(z + v . V -  L)P, 
yielding 

4 
S, = ~ P(z + v. V - L)PCVjB * (6.18a) 

j=l 
4. 

= Z (v.~),~(r- R ~~ ){W/ - ~Tt}B  * (6.18b) 
j = l  

where we used again that (z + v.V - L) acting on ~i  produces zero every- 
where except at the surface of the sphere, where it yields the source obtained 
in (6.18b). Next, taking the inner products of  (6.18b) with the densities n~ 
leads to 

4- 
fk (O)  &kl = 2 ( J k ( t ~  x t -  t~tTt))B~ (6.19) 

j = l  
where (6.8) has been used. 
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Hence B* is the inverse of the matrix given by 

L C O ) [ { B *  } - ~]~j < & ( ~ 7  ~ ~ ~ = _ u?j )) (6.20) 

The calculation and inversion of the matrix are straightforward. The result is 
B 

R 2R(1 + �88 2) R 2 
0 

rlUodl ~luodl p2nuodl 

R 
0 0 0 

6~1uo 

R ~-Rk B 
0 0 

)~d 2 T )~d 2 

1 
0 0 0 

r l b t  o 
m 

B =~ (6.21) 

with 
dt = 3 + 3R/p + }R2/p 2 § 1Ra/p3, d 2 = 2 + 2Rfir + R2/'G 2 ' 

In calculating the matrix elements [{B*}- 1]~j defined by (6.20) we neglected 
contributions due to velocity gradients occurring in ~3.  This is consistent 
with the truncation of the normal solutions (4.16) at order //R. The 
extension of B* to B simply is done by adding the elements Bss and B66, 
which, as discussed above, are both unity. If we combine Eqs. (6.13) and 
(6.17), we see that Eq. (6.2) can now be represented in matrix form as 

({ - BA)P'-P = BS ~ (6.22) 

where ~ is the 6 x 6 unit matrix and the initial source S o 

S O = - PTf im[v .  V(z)] (6.23) 

is represented as a six-component vector with the expansion coefficients Yi 
from (6.16) as components. 

Of the things that are still needed for an evaluation of (6.22), one is an 
explicit form of S ~ the other is an explicit form of the matrix A. The former 
contains the operator PqrP (~ acts upon a hydrodynamic distribution), the 

latter consists of matrix elements of the operator P T P .  Neither operator can 
be calculated explicitly; both operators have to be represented by matrices 
containing a number of unknown coefficients. In order to make these repre- 

sentations consistent it is advantageous to rewrite S o in terms of P~2P. To do 
so we set V(z) = ~V(z) and start from the identity 

Tflm[v-V(z)] = Tflm[v. V(z)] - f lmz(v. ~)[r. V(z)] 3(r - R) 

+ (v.~) 6(r - R) [ V ( z ) / U o ] { ~  t - ~ t }  (6.24) 
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which follows from (2.15), (6.5d), (5.3d), and (4.16). Next we use (4.22b) in 
order to construct T. The last term on the right-hand side of  (6.24) does not 
contribute to the boundary layer corrections, because it is a hydrodynamic 
source of  type (6.7). The first term on the right-hand side is transformed 

into Tf lm[v .V(z)] .  The second term on the right-hand side gives rise to a 
source of  radial momentum (a source of  type $1) and perhaps an energy 
source (of type S J ,  but the strength of these sources is an order l/R less 

than the strength of  similar sources resulting from ~f lm[v .V(z )]  (we use 
again that z ~ v/RZ). Henceforth the contributions resulting from this term 
should be neglected in our approximation. The resulting equation for 
T/~m[v. V(z)] is 

Tflm[v.  V(z)] : Tflm[v.  V(z)] 

+ (v.~) 6(r - R) [V(z)/uo]{OP~[ t - ~]"'} (6.25) 
We make a separation 

with 

S O = S ~ + S ~ (6.26) 

S O = - PTf lm[v.  V(z)] (6.27a) 

S ~ = - ( v .  ~) 6@ - R) [ V(z)/uo]{~P~ t - ~]nt} (6.27b) 

With the aid of  (6.12) and (6.14) these sources can be represented as 
vectors in the following way: 

s o = v ( z )  

23 

- - / l  4 

0 

$5 

$6 

s ~ : V(z) 

where S 5 and S 6 a r e  unknown constants. 

I -  qR/p21 
0 

n 

0 

0 

(6.28) 

Now we come back to the problem of  the undetermined elements in 
the matrix A. From the fact that �9 vanishes inside the sphere it follows 
that P ~  must be of  the form 

4 

Pff? = ~ #iq'i (6.29) 
i = l  

because the inside parts of  ~ s  and q% cannot be canceled by linear 
combinations of  the other q~. This implies that in the vector equation 
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(6.22) only the first four elements are physically relevant. These, however, 
are determined entirely by the 4 x 4 submatrices B* and A* with A~ = Aij 
for i,j ~ 4: First of  all, since PqJ is of  the form (6.29) the elements Ai5 and 
Ai6 do not come into play in (6.22), Second, the elements Asi and A6i only 
contribute to the fifth and sixth elements of the vector equation, because 
of the property B~j = 6ij for j = 5, 6. These elements simply have to be such 
that, taking into account the unknown values of $5 and S 6' (6.22) becomes 
an identity for the fith and sixth element once it has been solved for the 
first four elements. The equation for the first four elements reduces to 

(~* - B*A*)q ~* = B*(S~ + S~ *) (6.30) 

where 3" is the 4 x 4 unit matrix: ~ *  is the restriction of PqJ to a four- 
component  vector with. the coefficients /~ from (6.29) as components;  and 
the S o* are the four-component vectors 

2 
s ~ . . ,  S ~  ~n~'~/ (6.31, 

The explicit form of A* is obtained from (6.14) as 

[ -n)~l(1 + �89 2n21uo 

-n23(  �89 - 1R/p)u 0 -n}~3u 0 
A* 

= n24(1 + ~R/p)Uo -2n24u o 

0 0 

- n,~ 3 D r/'~r 
n25(1 + R/a) 

0 

(6.32) 

where we used the fact that qQ vanishes outside the sphere. Finally, we 
rewrite (6.30) once more by putting 

4 

q~* = B ' S *  = B* ~ CiS i (6.33) 
i = l  

defining S* as the hydrodynamic source of  qJ*. I f  we substitute this into 
(6.30) and multiply by {B*}-1, we obtain 

('0" - A*B*)S* = S O* (6.34a) 

S* --- ('~ * - A ' B * ) -  1S~ (6.34b) 

= ('~* - A*B*)-~S ~ + S~* (6.34c) 

= S* + S* (6.34d) 
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To obtain (6.34c) we used the property 

A*B*S ~ ~ A* = 0 

The solution of (6.34d)is obtained by elementary algebra from (6.21), (6.31), 
and (6.32) as 

S* = V(z) (6.35) 

with 

C 1 = 3  n23 1 + - - +  + 6 + - - +  + p p - j  

x 3 + - -  + n23 (6.36a) 
P 

( ~)( R R) -1 
C2 = ~n23 1 + 3 + -- + n23 (6.36b) 

P 

In the diffuse reflection case 23 is of order unity. Then all terms not containing 
23 must be consistently neglected since they are of relative order l/R. 
Equations (6.36) in that case reduce to 

C~ ~ = ~-(UR)(1 + R/p + R2/p 2) (6.37a) 

C~ i = ~(q/R)(1 + R/p) (6.37b) 

In the case that T = T~ we can substitute (6.15) for 23. If in addition the 
viscous length (on the order of the mean free path) 

lv = (2rcflm)i/2v (6.38) 

is introduced, Eqs. (6.36) take the form 

3 1  ~1~- ( i  R R~)  6R 3R 2 R~]  
= + - - +  + 6 + - - +  + c ,  p p 

x 3 + - - +  (6.39) 
P 
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- + -- + (6.39) C2~ 2 R l~ 1 + 3 P 

Notice that as soon as :t >>l~/R, (6.39) reduces to (6.37). 
The distribution function q~ is found from (6.33) in the two respective 

cases as 

1 P~ai 2 Uo 

pq, 3 V(z) 
= 2 Uo(3 + R/p + ctR/l~) (6.40) 

[ < _ _  ) + ~ R (  ~) 1 v~z~*~uo • U + 2  qq 1+ % - 

Notice that in either case Pq~ vanishes inside the sphere, as it should. 
The drag force exerted by the gas molecules on the sphere can be 

obtained from (3.14) as 

F(z) = -jdr (mvT{-/Tm[v.V(z)]  + ~(r ,  v, z)}) (6.41) 

of (2.15), (4.17), (4.20), (4.22), and (6.2), we find from With the aid 
Eq. (6.41) 

? 

= -- jdr (rnv{PTPq s - PTPflm[v. V(z)] F(z) 

- (v. ~) 6(r - R) firn[v. V(z)] }) (6.42) 

The third term on the right-hand side of (6.42) gives a vanishing contribution 
to the integral, and from (6.1) it follows that PTPq/ -  Pq2flm[v.V(z)] can 
be identified with the source S* of Pq~ which appears in Eq. (6.33). Hence 
the expression for the drag force can be rewritten, 

. tdr (m[(v. f)(~. ~) + (v. O)(~). ~)J~S*) (6:43a) F(z) 

=_fdr~I (C1 _qR,pyj cos2 | + C2 sin a | 5 ( r -R)  (6.43b) 

4 ~ R 2  :~ C 1 - + 2C 2 V(z) (6.43c) 
3 

=-2~z~IRV(z)~ ~RLI ~ (3 +3R__+p 1_3p2jR2~ +6+--+6Rp ~-R 2 + 31R)-~j 

x 3 + - -  + (6.43d) 
P 
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To obtain (6.43a) we used rotational symmetry about the z axis; to derive 
(6.43b) one needs (6.4), (6.8), (6.34c), (6.34d), (6.35), and (6.31) and then 
one arrives at (6.43d) by means of elementary algebra. The result (6.43d) 
agrees with the expression for the drag force obtained by Albano et a/. (2~) 
from the linearized Navier-Stokes equations, provided one identifies c~R//v 
with the slip coefficient. Hence we may conclude that the particle sphere 
reflection mechanism described by I"~ gives rise to partial slip boundary , 
conditions with slip coefficient c(R/lv. We want to stress again that this is 
only true as long as ~ is of  order l/R, and in all realistic cases stick 
boundary conditions will emerge, up to corrections of order 1/R. It is worth 
emphasizing the fact that Eq. (6.43d) leads to F = - 6 ~ t / R V  for diffuse 
reflection, and to F = - 4 n t / R V  for specular reflection, in the case that the- 
flow is steady and z can be set equal to zero. These results should be 
contrasted with those described at the end of Section 3 that are obtained 
if the boundary layer is not taken into account. Finally we mention that 
the drag force can also be calculated in a slightly different way by using 
the equality 

T{-/~m[v.V(z)]  + q'} = (v.~) a(r - R) {- f lm[v .V(z) ]  + '0} 

(2.15), (2.18), and (4.4). Substituting this into (6.41), one 

(" 
F(z) = - J d r  <rnv(v.~) (~(r - R) { - f i m [ v . V ( z ) ]  + qJ}> (6.44a) 

= - f d r  (mv(v.~) c~(r - R) P q ' )  (6.44b) 

where we used that the average value of  the radial current mv(v.~) is deter- 
mined to leading order in I/R by the hydrodynamic part of the distribution 
function alone, as was discussed in Section 5. Evaluation of  (6.44b) with the 
aid of (6.40) leads to the same result as (6.43d). 

We conclude this section with the following remark: It might appear 
that we have really accomplished very little after all this work, simply giving 
a rather long derivation of a well-known result--Stokes'  law--and of the 
Chapman-Enskog normal solution for the hydrodynamic part of the distri- 
bution function Pq' .  However, we showed at the end of Section 3 that it is 
not a simple matter to obtain Stokes' law from Eq. (6.41). The effects of 
the boundary layer must be taken into account somehow when the force 
is computed, and what is what we accomplished here. 

We have taken the boundary layer effects into account in this section 
by either of  two ways. One way is to use the relation between the 
boundary layer distribution function and the hydrodynamic distribution 

which follows from 
obtains 
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function to upgrade the T in Eq. (6.41) to the T and I" in Eq. (6.42). The 
other way is to use the fact that P qJ determines the radial currents to 
leading nonvanishing order in I/R, from which we derive (6.44b). In any case, 
a careful treatment of the boundary layer is required. 

7. T H E  C O N T I N U U M  L IMIT  

In spite of all the criticism raised in Section 5 against the projection 
operator defined by (4.10) or (4.13), one may ask if, under certain limiting 
circumstances, this projection operator might still be useful for obtaining 
the hydrodynamic part o f  an arbitrary function of velocity and position. 
Suppose, for example, that all lengths are scaled by dividing them by the 
characteristic macroscopic length R, and that all times are scaled by dividing 
them by the characteristic time R2/v, and then one takes the limit R--, 0% 
keeping the unscaled mean free path length and mean free time fixed. In 
this limit, which is called the continuum limit, the thickness of the kinetic 
boundary layer shrinks to zero, so effectively the kinetic boundary layer 
becomes part of the surface of the sphere. In this limit the distribution 
function outside the sphere consists of a normal part alone. Furthermore, 
the particle-sphere collision operator T has to be replaced by an operator 
Ten-, which also has the general form (2.3), but with a kernel Pe~(v', v, ~) 
describing the probability that a gas molecule entering the kinetic boundary 
layer with velocity v' at position R~ leaves the kinetic boundary layer with 
velocity v. Microscopically seen, the molecule will not leave the kinetic 
boundary layer at the same position and time as it entered. The point of 
exit will be at a distance on the order of the mean free path removed 
from the point of entrance and the moment of exit will be on the order 
of the mean free time later than the moment of entrance. In the continuum 
limit, however, the displacement is scaled by R and it is reduced to zero. 
Furthermore, the typical macroscopic time scale is R2/v, as discussed before; 
hence the time delay is also scaled down to zero in the continuum limit. 

To specify more precisely what is meant by entering and leaving the 
kinetic boundary layer we consider a shell of thickness eR around the sphere, 
which entirely contains the kinetic boundary layer, provided R is large 
enough. Then the distribution function outside the shell is always a hydro- 
dynamic distribution function of the form (4.16). We now define Pe~-(V', V, ~) 
by the relation 

Peff(v', v, ~) --- lim lim PE(v', v, J) (7.1) 
E~O R ~ a o  

where P~ describes the probability that a gas molecule entering the shell 
R < r < (1 + QR at the position (1 + ~)R~ with velocity v' leaves this shell 
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with velocity v. Since the outside distribution function is entirely hydro- 
dynamic, Te~ ~ acts on normal distributions only and, if one considers Tefrf 
as a source term, the source term generates a hydrodynamic distribution 
only. In other words: Teff= PTerfP. In fact the whole relevant Space of 
distribution functions in the continuum limit consists of the hydrodynamic 
distributions alone; hence the use of the projection operator is in a way 
superfluous. All operators acting on the distribution function simply have to 
transform hydrodynamic distributions into hydrodynamic distributions. 

On comparison with (4.21) we may conclude that we can make the 
identification 

Te~ = lim PTP (7.2) 
R ~ o o  

where in fact one has to use the properly scaled form of P TP. The latter 
operator describes the source of a normal solution resulting from T acting 
on a given normal solution plus the boundary layer induced by it. This is 
precisely what we require of T~fr. However, in the continuum limit all detailed 
information of the boundary layer distribution functions is lost and all 
that remains is the information about the particular hydrodynamic solution 
generated by the action of Teff on a given hydrodynamic solution. This 
action can now be characterized by means of the projection operator (4.13) : 
because of the scaling of  all lengths by R, the upper limit on the k integration 
in (4.10) goes to infinity and the smeared-out A functions, such as the one 
occurring in (4.12) are reduced to ordinary c5 functions. Hence one has 

- -  A 

T~frq~NS = PTe~rTNS = ~ IW~(v))(~(v)lTeff~NS) (7.3) 
Y 

As in (6.14), the matrix elements of Tea can be determined up to some 
unknown multiplicative constants by the methods of  Appendix B. It will 
turn out, however, for reasons to be discussed later, that it does not suffice 
to approximate the T ~, which are given by an expansion in terms of the 
gradients, by the lowest order terms alone; the terms proportional to the 
gradient also have to be included. The latter give rise to a new type of 
source proportional to a gradient 1 t of  the function, 6'(r - R). On the other 
hand, inclusion of  terms of  O(V) in q~NS is not needed in (7.3); these would 
lead only to corrections of  O(I/R) (zero in the continuum limit) in coefficients 

12 In spite of the fact that all sources in the extended Boltzmann equation should be 
proportional to 6 ( r -  R), it is not inconsistent to have such gradient sources here. The 
reason is that the projection operator P, Eq. (4.10), smears out the 6 function over a few 
mean free paths; then in the continuum limit such a smeared-out ~ function can be expanded 
as a multipole expansion in terms of ~(r - R) and its derivatives. 
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of  source terms which were nonzero already. For  brevity we restrict ourselves 
to the matrix elements of  T~,eff with c~ ~ I /R as before, which follow from 
Eqs. (B.3), (4.15), (4.16), (2.10), and (2.11) as 

(~"T~ , e~Ns )  = 0 (7.4a) 

- ~  ~ (v .~ )  6(r - R) ~ -  

+ 26(V.f ) 6(r - R) (u.?) + O ~ (7.4b) 

+ =(2=)-~/= I(r - R) (u. 0 ) 0  

+ v(]3m) 1/2 V.(f~) -t- t~f) c~(r -- R) (u .O)  + O ~ (7.4c) 

Here 21, 22, and 24 are the same unknown constants as in (6.14), and 26 is a 
new unknown constant  coupling the energy density to a gradient source. Now 
we want to know the distribution function qJNs generated by the source 
- -  ^ 0  T~,en-~Ns for a given q~~ s. 

To do this we first discuss the normal  solutions of  the linearized Boltz- 
mann  equat ion with a general inhomogeneous  or source term S; next we 
pass to the case where S is identified with T~,en-~PNs . This Bol tzmann 
equat ion is of  the form 

(Z q- V" V - L)~IJNS = S (7.5) 

Because we work in the cont inuum limit, only the action on the normal  
solution is needed. If  one now inserts (4.16) for qJNs and takes inner products  
with q~", W", and qjr, one obtains, with the aid of  (4.15), the hydrodynamic  
equations in the presence of  source terms 

z 6n + n V.u = a ,  (7.6a) 

znmu + ]3-1[V~n + (n /T )  V6T-J - r/[V2u + ~-V(V.u)] = ~r; (7.6b) 

3T  2 5 213 1 2]3(  1 ) 
z --T + 3 V.u  - 3TDr_ V Z 6 T  = 3nn cr~ - n a ,  - ~n a h + ~ ~r,, (7.6c) 

where the density source, the momen tum source, and the energy source are 
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defined by the relat ions 

0", = n(qJ"]S) (7.7a) 

ap = n ( m / f l ) l / 2 ( ~ " l S  ) (7.7b) 

0"e = (3) l /2(n / f l ) (q '~ lS)  + ~(n/ f l ) (q~"[S)  (7.7c) 

and 0"h is defined to be the enthalpy source. 
Once a solution of  (7.6) has been found the corresponding solution of  

(7.5) follows with (4.16); as a consequence of  the restriction to no rma l  solu- 
tions, Eqs. (7.5) and (7.6) are entirely equivalent.  In order  to solve (7.6) we 
must  know what  forms  the source terms occurring in these equat ions can 
possibly take. F r o m  the tensorial  a rguments  developed in Section 5 we may  
conclude tha t  the fields u, ~iT, and fin occurring in the solution of  the extended 
Bol tzmann  equat ion  must  be of  the fo rm 

u = f l ( r )  cos O f + f 2 ( r )  sin | ~) 

6 T  = f3(r)  cos 0 ,  6n = f 4 ( r )  cos O 

I f  we m a k e  the identification S-=  T~,en-Wys, the following possibilities for  
the hyd rodynamic  source terms are obta ined  f rom (7.4) and (7.7). There  are 
three m o m e n t u m  sources:  

~1 = ( z ' r ) f  6(r - R )  (7.8a) 

a z = ~.(~ - ff) 6(r - R )  = ( ' ~ . ~ ) ) 0  6(r  - R )  (7.8b) 

a 4 = V. {E$~ + ~f - 2f f (~ . f ) ]  6(r - R)} 

= V. {( (~  + f~)) sin | O(r - R)} (7.8c) 

and two entha lpy  sources:  

aa = ( ~ ' f ) 6 ( r  - R )  (7.8d) 

0.5 = V~:~f 6(r - R )  (7.8e) 

Finally, if we also consider the sources tha t  can result f rom the action o f  
T~,o~ on a no rma l  solution, we find an addi t ional  m o m e n t u m  source 

a 4 ' =  V.E(~f - � 8 9  - R)] (7.8f) 

and a density source 

0 6 = ( Z ' r )  6(r  - R )  (7.8g) 

The source a4 '  accidental ly does not  occur  in (7.4), because (v.f)  z is a left 
e igenfunct ion of  Tsv. Fur the rmore ,  a 4' is effectively equal  to a linear 
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combina t ion  of  a~ and a2 : 

O" 4 '  = (2al - a 2 ) / R  (7.9) 

as is shown in Appendix D. 
The hydrodynamic  fields resulting f rom any of  the sources a~ ..... ~r 6 can 

be calculated f rom (7.6). Again,  the corresponding normal  distribution 
functions are always linear combinat ions  o f  the distributions q~ .... , q~6 given 
in Section 6. For  simplicity we will restrict ourselves f rom now on to the 
s tat ionary case, z = 0, but  this restriction is in no way essential and can be 
avoided without  problems. In the s tat ionary case the fo rm of  qJ~ . . . . .  kIJ 6 
simplifies and these basic functions are described by the following set o f  
fluid fields : 

~t/1 : U =  

8n/n  = 

8 T I T  = 

~ 2  ~ U ~- 

6n/n  = 

~ 3 :  U = 

(Sn/n = 

~4: U = 

~ 5 :  n :  

uo{ W ( r ) ( R / 2 r ) [ ~  + (~.~)f] + [1 - W(r)]~} 

W(r ) f imvuo (  R/rZ)(~ . 2) 

0 

Uo{ W(r) (R3 / r3 ) [~  - 3(~. f)f] - 2[1 - W(r)]~} 

8 T / T =  O 

0 

- 3 T I T  : W(r)(R2/r2)( '~ .~)  

uo[1 -- W(r)]~ 

~T/r= 0 

Uo{ W(r)3Ao(R3/r3)[~ - 3(~. f)f]  
+ [1 - W ( r ) ] ( r Z / R 2 ) [  - ~ ~ + ~(~ - f ) f ] }  

(7.10) 

Dn/n = - [1 - W(r)-]~f lrnvuo(r /R2)(~ . f )  

~ T / T =  O 

~e6: u = 0 

~n/n  = - ~ 7"/T = W(r) �88  2) - [ 1 - W(r )] �89  f:) 

The calculation f rom (7.6) o f  the s tat ionary hydrodynamic  fields 
generated by any of  the sources al  ..... ~6 is tedious but straightforward.  An  
outline and some of  the details are given in Appendix  D. 

In the linearized hydrodynamic  equat ions (7.6a)-(7.6c) certain combina-  
tions o f  the ~i appear  which we have called a , ,  av ,  amd ah. These are 
related to al  .... , 0  6 by linear relations o f  the form 

fin ~--- C60-6 (7.11a) 
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~p = C la  1 + C2& 2 + C4~ 4 

a h = C3G 3 + C5ff 5 

3 8 3  

(7.11b) 

(7.11c) 

The coefficients C1 ..... C 6 determine the source S of  the hydrodynamic distri- 
bution function, which follows from Eqs. (7.7), (4.13), and (7.8) as 

1 //B "~i/2 

q-- ~ utJT(c30- 3 -~- C50- 5 -]- C60-6) 
/7 

(7.12) 

The hydrodynamic distribution function generated by such a source can 
be calculated in the following way: First calculate the hydrodynamic flow 
fields generated by each of  the sources ~1 .... , a 6 by solving the equations (7.6) 
with all but one of the C 1 set equal to zero in Eq. (7.11). The flow fields 
generated by the set a , ,  ap, G are then found as a linear superposition of 
these. Finally the hydrodynamic distribution function generated by Sis found 
by substituting this solution into (4.16). 

As a basis S /  for the set of  sources for hydrodynamic distribution 
functions 12 we choose a set of  six sources Sj ~ given by (7.12) with Ci = 6ij. 
The superscript c refers to the continuous limit. A matrix B c can then be 
defined again, such that ~ j  is the amount  of  q~i generated by the source Sj c 
This matrix reads 

BC = 

-R/3rlUo 2R/3qUo 0 0 0 0 

0 R/6rlu o 0 0 0 - l/3nuo 

0 0 - R / 2 2 T  0 0 0 

0 0 0 0 0 1/nuo 

R/qu o - R/rlUo 0 - 6/qUo 0 0 

0 0 2 R / 3 2 T  0 4/32T 0 _ 

(7.13) 

From (7.7), (7.4), and (7.10) defining the qJi, and the definition of Sjc 
given below Eq. (7.12), we can infer the action of  T~,efr on any of the ~ .  
As in Section 6, this can be summarized in the form of a matrix A c such 
that A~ is the amount  of  source S~ c generated by T~xff acting on ~ j  The 

12 These  s h o u l d  n o t  be  c o n f u s e d  wi th  the  sources  a l  ,..., 06 o f  h y d r o d y n a m i c  fields 6n, u, 61". 
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elements of this matrix are obtained as 

A c 

- [ r n \  1/2 m 1 / 2  m t,2 
-2,~,-fl) nUo 2211~-) nu o 2z(m//3)~/2nk.fl 0 2 , (~)  nu o 

- o:mnuo - ctmnuo - c~rnnuo 

2(2rcflm)l/z , (2retire)l/- ~ -  0 0 30(27zflm)l/2 

2cm - s 
2,,nUo - 224nUo 0 

fl(2~zflm) 1/z 15 

1 - f l u  o 
- ~ rlUo - qUo 0 0 30 

26nU0 -- 226nu~ .~ T 0 - ;t6nu~ 

0 0 0 0 0 m 

u 
,~ .2(m/ ' f l )  l, '2rl 

4kBfi  

0 

2fl(2rcflm)l'2 

0 

2T 

4 

0 

(7.14) 

The extended Boltzmann equation (6.1) now assumes the form 

(V" V - L)~tJNS = Ta,eff~JNS - -  T~,~nflm(v.V) (7.15) 

which can be brought in a form like that of Eq. (6.22). 

(Be)- lqJNS = ACqdNS + S ~ (7.16) 

The explicit form of S ~ is readily obtained by separating it according to 

S ~  = - 1"~ ,e f f f lm(v .V)  + f l m ( v . r ) ( v . V )  c~(r - R )  = S ~ + S [ f  c ( 7 . t 7 )  

where (2.15) has been used. S ~ is evaluated with the aid of (7.4), (7.7), 
and (7.8) and S ~ is calculated explicitly by taking inner products with 
IW") and [Wr). Representing a source y6=1 C~Si by a column vector with 
elements C~, and choosing the z direction parallel to V as before, one then 
obtains 

S ~ = I"/V 

76 
- -  13~ 3 

1 
(7.18a) 
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S ~ = I 1V 

where we introduced the constants 

71 = (~ ln /11 ) (m / f l )  1/2, 

73 = 424n/11, 

r 4 / R \  

(7.18b) 

72  = - -  ( ,~2n / )O(m/ f l )  1/2 

7 ,  = ~ t/2] ( 7 . 1 9 )  

76 = ~ 1/2] 

Furthermore,  we used the identity (7.9). Like (6.22), Eq. (7.16) can be 
solved as 

~Ns  = BcSC (7.20) 

with 
S c = ( ~  - A ~ B C ) - I s  ~  -ACB c) I ( s P ' ~ + S  ~  (7.21) 

The matrix ACB c follows from (7.13)-(7.14) as 

- 1 R ? 6  - T T 5  R 7 6  0 -1576 0 111"p6/F/ 

1 o 15 o  11/. 

_ 0 0 0 0 0 0 

ACBC = (7.22) 

Inversion of ~ - ACB c produces, up to corrections of relative order l /R,  

(1] _ A ~ B  ~) - t 

(Tu 3)s 

5 

- 3 ( u  - l)s 

5 

Rg3u(I -- �89 
1 

= - -  30 
D 

- R s  

5 

R73u(275 -- Rr) 
9O 

0 

-2RTxt R72(7u - 3) -2"&t(2u  - 1) - ) ,2(7u - 3) -2q)'tt(2u - 17 
15 15 5 I5 3n 

2RTd - R ? z ( u -  1) 22jt(u - 1) ] . ' 2 ( l l  - -  i) 2q)'it(u - I) 

1 5  5 5 5 3n 

0 2R71(1 - �89 0 Rylpu 0 
15 90 

- 2 R Z T l t  - R 2 7 2  2Ryd(u + 1) RF 2 211Ryzt 
45 15 15 15 9n 

0 --2R271qu 0 RyI(12 + Rp)u 0 
45 90 

0 0 0 0 0 (7.23) 
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with the abbreviations 

p = 874 - (7273/~1), q = 1 - 23(Tz75/Tt) 

r = 1 - 12(ys~4/73), s = (1 + 2R74 - 1), t = 1 + 1 R p  - �89 

1R = u =  1 + ~  Y6, D = D e t ( ~  -ACB c) (sRTttU 

Equation (7.21) can now be solved, with the result 

/6 + R '6~ 

R76 / 

iJ S~ - 2 R(3 + R76) 

S~I = S~ + O(l/R)] (7.24b) 

The resulting distribution function follows from (7.20) as 

qJYs = ~V (33 + 2a-RY6 ~1 + u  0 + R76 3 � 8 8  " 2  - " 4 ) +  R76 (7.25) 

This expression agrees with Eq. (6.40) in the limit z ~ 0. It therefore 
follows that the drag force on the sphere will agree with Eq. (6.43d) when 
the limit z ~ 0 is taken. ]~t seems certain that a similar continuum calculation 
as that given here but with z ~ 0 will lead to the full result, Eq. (6.43d), 
but we have not checked this. 

We conclude this section with a few comments. 
(a) One should notice that the final source S{ [Eq. (7.24)] agrees with SI* 

given by Eqs. (6.35) and (6.36) in the limit of z ~  0, except for the 
presence of an amount of $4 c in SI c. In spite of the fact that the sources 
have been defined in different ways in Sections 6 and 7, the identity of the 
final expressions for S~ ~ and St* can be understood by noting that the 
determination of the radial currents of momentum, particles, and energy also 
fixes the sources of these currents at the surface of the sphere. 

(b) The occurrence of $4 c in SI c can be understood by noticing that the 
sources $1 c and $2 ~ generate certain amounts of ~5 as well as of ~ and 
~z .  Since ~5 does not vanish in the interior of the sphere, the total amount 
of ~5 generatedby all the sources should be zero. In Section 6 we ignored 
all amounts of ~5 generated by any of the sources, since if the distribution 
function vanishes in the interior of the sphere, as it should, the amounts of 
qL 5 should eventually cancel, and one does not need to take ~75 into account 
in the calculation of  any quantity of  physical interest. Now in this section 
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we were able to explicitly determine the amounts of  qJ5 generated by the 
sources and hence could show that the total amount  of  ~5 thus generated 
vanishes. The source $4 ~, which is of  a gradient type, generates exclusively 
a distribution function qJs, and in S~ ~, the source $4 c occurs in precisely the 
right way to cancel the amount  of  qJ5 generated by $1C and $2~. ~3 

(c) From remark (b) one can understand why the functions ~?~ were 
expanded to first order in I/R in the derivation of Eq. (7.4). The terms first 
order in I/R are responsible for the gradient terms on the right-hand side 
of  Eq. (7.4), and the source term $4 is contained in these gradient terms 
alone. 

(d) The procedure adopted in this section provides a justification for the 
method employed in Section 6. Here we could explicitly determine the amount  
of  qJ5 and ~6 generated by the sources, and we could show that the results 
obtained by taking these terms into account are identical to those obtained 
when qJ5 and q~6 are systematically ignored. 

(e) There is also a difference between this section and Section 6 in the 
way that the source S ~ is dealt with. Namely, in Section 6 we observed 
that S ~ is the exact source of the inside hydrodynamic solution 
-[V(z)/uo]CF4, Eq. (6.27b). In this section we used the projection operator 
to express S ~ in terms of $I c, S S, $4 ~, and S;~ r Explicit calculation 
shows that the distribution function generated by S ~ is identical to 
-[V(z = O ) / u o ] e e 4 ( z  = o ) .  

(f) The identity of  S n and S ~ is a result of  the fact that Sn is a zero 
eigenvector of  AB. The corrections of  order l/R in (7.22b) arise from the 
neglect of  similar corrections in (7.21). The reason that SI~ is a zero eigen- 
function of  AB is that it generates only a distribution function inside the 
sphere. T acting on this distribution function then produces zero. 

8. D I S C U S S I O N  
Let us briefly summarize the content of  the preceding sections. We 

started from an extended Boltzmann equation describing a dilute gas at rest at 
infinity in which a macroscopic sphere performs an arbitrary translational 
motion in the z direction. Compared  to the ordinary Boltzmann equation, 
this equation contains an extra term describing changes in the distribution 
function due to collisions of  gas molecules with the sphere. The C h a p m a n -  
Enskog solution of the ordinary Boltzmann equation turned out in general 
not to be a solution of the extended Boltzmann equation, because the inter- 
action between gas particles and sphere requires that the distribution function 

13 It is worth mentioning that $4 c must be a constant multiple of the source S 5 discussed in 
Section 6. Similarly, S~ c must be equal to $1 plus some amount of $5. 
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satisfies certain boundary conditions at the surface of the sphere which are 
not satisfied by the Chapman-Enskog solution. 

In Section 3, we argued that the actual solution of the extended Boltz- 
mann equation must consist of two parts, one part which has the 
Chapman-Enskog form and the other part which describes a kinetic 
boundary layer extending over a few mean free paths around the sphere. 
The two parts cannot be independently determined, but instead are related 
tO each other by the boundary conditions that the distribution function 
satisfies at the surface of the sphere. As a result, any systematic description 
of the distribution function must take the effects of  the boundary layer into 
account. In the remainder of the paper we have shown how this can be done. 
We introduced projection operators which allowed us to decompose the distri- 
bution function into a Chapman-Enskog, or hydrodynamic, part and a 

' boundary layer part. In this way we could obtain a formal expression for the 
hydrodynamic part of the distribution function where the effects of the 
bdundary layer are explicitly taken into account. We also obtained a formal 
expression for the boundary layer part of the distribution function. We then 
showed how one could systematically derive various properties, at least to 
lowest order in l/R, without having to ignore the presence of the kinetic 
boundary layer. In particular, we gave a derivation of Stokes' law for the 
force on the sphere. Although this result is hardly new, our derivation is 
the first one from the Boltzmann equation which incorporates the effect of 
the boundary layer and does not depend on some specific model for the 
gas molecules. It is, however, very intricate. 

Part of  the difficulties encountered in this derivation revolved around 
the construction of the proper projection operator to be used in the 
decomposition of the distribution function into its hydrodynamic and 
boundary layer parts. We first introduced a projection operator which seemed 
to be a natural one, namely the projection onto the space of the usual 
hydrodynamic modes. 

It then turned out that this projection operator produced a rather 
unphysical description of the normal solution close to the boundary of the 
sphere. This could be repaired by passing to a projection operator pro- 
jecting onto the space of hydrodynamic solutions which are discontinuous 
at the surface of the sphere. 

Although we could not construct the operator explicitly, we were still 
able to determine its action on a distribution function or a source term to 
leading order in l/R: Thereto we used the requirement that to lowest order 
in the Knudsen number the radial components of the currents of mass, 
momentum, and energy are given everywhere by the hydrodynamic part of the 
distribution function alone. This then enabled us to solve the extended 
Boltzmann equation to leading order in 1/R and to obtain the hydrodynamic 
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part of the distribution function and the drag force on the sphere to this same 
order. In the continuum limit finally, where the kinetic boundary layer 
shrinks onto the boundary, the objections against the usual hydrodynamic 
projection operator are no longer important. The action of the latter was 
worked out explicitly in Section 7 and found to lead to the same results 
for the hydrodynamic distribution function and the force on the sphere as 
was obtained in Section 6. However, the method of  Section 6 provides a 
decomposition of  the distribution function which is physically more satis- 
factory if one does not pass to the continuum limit. 

The method we used differs from more conventional methods in that it 
calculates the distribution function directly and not by supplementing a set 
of differential equations (the hydrodynamic equations) with boundary con- 
ditions at the surface of the sphere. Yet the resulting fluid fields do satisfy 
these boundary conditions as expected, at least to lowest order in l/R. 
A refinement of the boundary conditions to the next order in l/R cannot 
be obtained unless one can calculate the kinetic boundary layer. 

It is interesting to compare the source terms in our solution with those 
used by Scharf. (1~ Scharf considers only the case of stick boundary con- 
ditions, for which he has a source -~(q/R)(v.~)(v.V)6(r- R). This is 
precisely in agreement with our results (7.24a), (7.8), and (7.6) for the total 
source of the distribution function to leading order in l/R. However, Scharf 
simply postulates this source term and does not indicate how it could result 
from the microscopic interaction mechanism between gas molecules and the 
sphere. 

In the theory of  rarefied gas dynamics the drag force is usually calculated, 
as mentioned in the introduction, by summing an infinite series of terms ~2'13) 
in which the nth term contains the contributions of all dynamical events in 
which n correlated collisions between a gas molecule and the sphere 
occurJ 2'13) It is very interesting that the same method can also be used in 
the hydrodynamic regime. One then obtains a divergent series which can be 
identified with an iteration of  (6.34b) in powers of  AB. Resummation of  this 
series brings one back to (6.43e) and the well-known hydrodynamic solution 
is obtained again. The details of  this analysis will be discussed in a sub- 
sequent paper, where we will also discuss the refinements needed in the 
case of  the drag on an infinitely long cylinder moving in a direction 
perpendicular to its axis. 

A P P E N D I X  A. S O L U T I O N S  OF T H E  L I N E A R I Z E D  
H Y D R O D Y N A M I C  E Q U A T I O N S  

Our starting point is furnished by the linearized hydrodynamic equations 
for a dilute gas, (2-7) 

z 6n/n + V- u = 0 (A. 1) 
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zu = - ( 1 /m~)  V(~n/n + ~T/T) + v V2u + �89 V(V.u) (A.2) 

z 6 T / T  = -2 (V .u )  + 5-DT V2 6 T / T  (A.3) 

First we recall that the gradient is of order R-~ and, on the time scale 
in which we are interested, z is of order v/R 2. Then it follows from (A.1) 
and (A.2) that 

n 

V . u  = 0 (flm)l/2 R (A.5) 

To be consistent with our truncation of the linearized extended Boltzmann 
equation at O(V) we must calculate the flow fields to leading and first order 
in l /R only. This means, for instance, that we must set V.u = 0 in case 
3n/n = O(l/R). 

One set of solutions of (A.1)-(A.3) is obtained by setting 6 T / T  = O(1). 
Equations (A.1) and (A.4) then lead to 

~n/n = - c~T/T + O(l /g)  (A.6) 

V.u = z a T / T +  O(l/R) ~ (A.7) 

Substitution of (A.7) into (A.3) yields 

z a T / T  = D T V 2 ( a T / T )  (A.8) 

The general solution of this equation can be given in the form of an expansion 
in products of spherical harmonics and spherical Bessel functions of 
imaginary argument as (22) 

6 T / T =  ~ C,,~Y~"(f)k~(r/a), r > R (A.9a) 
m,l 

= ~ D,aYt"(fOit(r/a), r < R (A.9b) 
m,l 

The functions k~ and il can be expressed in terms of ordinary Bessel functions 
of imaginary argument as 

kl(x) = (n/2x)~/ZK,+ 1/2(x), il(x) = (n/2x)l/2I~+ 1/2(x) 

In our case the only spherical harmonic excited is Y1 ~ (the z axis is chosen 
along V), so that 6 T / T  is of the form 

T + (~.~), r > R (A.10) 
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c - r / a  _ _  ---- D1 er/• - -~-  + + r2 + (~.~), r < R (A.10) 

The corresponding irrotational velocity ~which is of O(l/R)] is obtained 
from (A.7). 

Another set of  solutions of (A. i)-(A.3) is obtained by setting 3TIT = O. 
From (A.6) and (A.7) it follows then that V.u = 0 through relevant orders 
in I/R. Hence we can set 

u=V xA (A.11) 
and require, without loss of generality, 

V.A = 0 (A.12) 

Taking the curl of (A.2), one then obtains 

(z - vV 2) V2A = 0 (A. 13) 

For simplicity we restrict ourselves to solutions which have rotational 
symmetry about the z axis. We can separate A into: (1) a radial field, 
orthogonal to the z axis, (2) a parallel field, parallel to the z axis, and (3) 
a toroidal field, orthogonal to the first two fields. All three fields may be 
assumed to possess rotational symmetry about the z axis. In that case both the 
radial and the parallel fields give rise to a toroidal velocity field, which 
does not interest us here. Hence only the toroidal field remains. According 
to (A.13), it has to satisfy either VeA = 0 or (z - vVZ)A = 0. The required 
solutions of  these equations in spherical coordinates, with x = r sin | cos q~ 
y = r sin | sin ~p, and z = r cos | can be expanded generally as (22) 

A(~ 1) = - ~/c+t- T P~(cos |  qg] 

J 
r > R (A.14a) 

A~x 1~ = - ~, Cltrlpll(CoS 0 )  sin ~o 1 

A~ a) ~ cz/Pt l(cos 0 )  cos ~o 
l 

r < R (A.14b) 

A(~ 2) = - ~ ~kl(r/p)ptl(cos O) sin q~l 

A(~ ) ~ dtkz(r/p)Pll(cos | cos q~ 
l 

r > R (A.14c) 
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A~ 2~ = - ~, dl'il(r/p)P~L(COS O) sin q~ 
1 

r < R  
A~ 2~ = ~ d(il(r/p)Pti(cos O) cos (p 

l 

where Pt" denotes the Legendre polynomials. 
From (A.11) the corresponding velocity fields are obtained as 

l(l + I) o 
u'l) = - ~  c' ~ P' (e~ O ) t  r > R 

l 1 
u~' = - ~  C' rT~Y P, (c~ O) 

u~ 1) = - ~  c(l(l + 1)/-1Pl~ |  

1 
F < R 

u~' = Zc,'(l + l~/-le?(cos o~ ) 
l 

u'2) = - x d,l(l + 1) P-k,(r-)P,~ O)] 

l r \ p /  ~ r > R (A.15c) 

~,~' ~ d  + p  k, P,(cos|  

t" < R (A. 15d) 

u'g' ,X 4' + p ,~ ~ (cos o~ 

The corresponding density fields are determined as follows: From (A.2) and 
(V.u) = 0 one obtains V 2 6n/n = 0. The general solution with rotational 
symmetry about the z axis reads: 

6n/n = ~" Air- "+ 1)Pl~ O), r > R 
l 

= ~ At'/Pl~ | 
1 

From which one obtains for the gradients of 6n/n 

r < R  

(A.14d) 

(A. ! 5a) 

(A.15b) 

(A.16) 

V(fn/n)r = - ~ ,  Al(l + 1)r-e+2)Pl~ O) 
l 

r > R  (A. 17a) 

= ~" A/ l / -1Pl~ O) r < R 
l 
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V(6n/n)o = - ~  Atr-t t+2)ptl(cos | r > R (A.17b) 
l 

= - - ~  At ' r l - tPt l (cos  O) r < R 
l 

The coefficients A t and A t' are obtained by identification with (A.2); 
V(c~n/n) = -[3mn(z  - vVZ)u. The field u (1) satisfies V2u(1) = 0; hence 

V(bn(~)/n) = - fimnzu (1) = - -  ( f i t l / p z ) t l  (1) (A. 18) 

and one finds 

c~n ~1~ _ ~ / ~ / I  (t+ 
n - - - ~ - c :  1)Pt~ O) r > R (A.19) 

~l flq + 1)c[/Pt~ O) < R (l = -  y F 

The field u (~) satisfies (z - vV2)u (2) = 0; hence ~n(Z)/n = O. 
Specification to l = 1 leads to +1, ~2, ~)4, and +s as given in (5.3) 

A P P E N D I X  B. R A D I A L  C U R R E N T S  IN T H E  
B O U N D A R Y  LAYER 

In this appendix we want to demonstrate why even in the boundary 
layer the radial currents of  momentum,  energy, and particles are determined, 
to leading order in the Knudsen number, entirely by the hydrodynamic part  
of  the distribution function. 

To show this we start by considering stationary flow and look at the 
distribution function �9 generated by a source S 6(r - R), with S of order 
unity in l/R. As usual �9 may be decomposed into �9 = P ~  + P I ~ ,  where 
in the stationary case P ~  and P ; ~  are given respectively by 

P ~  = [P(v. V - L ) P ] -  JPS  c~(r - R) 

and 

(B.la) 

p• = [P l (v .V  - L ) P • 1 7 7  cS(r - R) (B. lb) 

One can argue that as a function of l/R, P y d  has the same magnitude 
as P• To see this, we first use the fact that only the sources within a 
region of a few mean free paths in diameter can contribute to P z ~  at any 
given point. Then in the limit as l/R--+ O, the surface reduces to a flat plate 
with a uniform source density and P •  approaches a finite limit which is 
proport ional  to the source P• Now since P l ~  is finite and pro- 
portional to P• and since I/R = 0, it must be true that P• and P•  
have the same magnitude in orders of  l/R. 
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Next we show that the radial currents generated by P• namely 

-• 
Jl,r = f']i• = ((v ' f )niP• qj)  

with n i defined by Eq. (6.4), are of order l /R compared to P l q  j. This can be 
seen by observing that, for example, V . j31=  0, which in spherical 
coordinates reads 

r-  2(O/&)(r2j~,r) + (r sin O) L 1 (&'c?O)[(sin | = 0 (B.2) 

. t  where we have set J3,~ = 0. Now we use the fact that jff = 0 beyond 
a few mean free paths from the sphere, and integrate (O/c~r)(r2j~.) along a 

radius from R to R + c~l. Then we find that 

1 ['R r 0 
- -  J O ) J 3 " |  j},r(R) R2 dr [(sin ,l 

e+~t sin | c~@ (B.3) 

Then, since J~'o can be at most of O(1), we conclude that JC3,r can be at 
most of O(I/R). A similar discussion can be given for the other radial currents. 
However, the radial currents generated by the source 6(r - R)S  are in general 
of O(1). This implies that to order unity the radial currents are completely 
determined by PUt', which is what we wanted to show, at least for the 
stationary case. 

It is worth pointing out that these arguments also lead to the conclusion 
that if PS  is of order unity in I/R, then PRJ is in general of relative order 
R/l. To see this simply compute the radial currents of energy and momentum 
using PqL The first terms in Pq~ which give nonvanishing contributions to 
these currents are terms involving (6n/n + 6T/T)  as well as the gradients 
of the velocity and temperature fields. All of these are of relative order 
l/R, while the radial current are of order 1, so that Pq~ must be of order R/1. 

Finally, we must consider what happens in the nonstationary case. In 
this case we allow only for variations on a time scale l, ha = R2/v ~ (R2/12)tmf, 
where t mf is the mean free time between collisions. The nonhydrodynamic 
solutions generated by a source at the surface of the sphere decay to zero 
in a few mean free times, and can therefore be written as 

f| ~ P• = dz exp[P• - L ) P s ] P •  - ~) 6(r - R) (B.4) 

For t o one may choose to = 10t =y, for example, because then the non- 
hydrodynamic solutions generated by sources at times before r = t -  to 
will have died off at time t. Equation (B.4) can be rewritten as 

;i o P• = d~ exp[PL(v-V - L)Pc*]PI[S  o + zXS(t - r)] 6(r - R) (B.5) 
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with 

~ 

S~ = ~o & S ( t - -  T); A S = S - S 0  

The source So produces a stationary solution of the linearized Boltzmann 
equation, which has radial currents of  relative order l/R, and the source AS 
is of  the order (l/R)2So due to the slowness with which the source varies. 
Hence the extra contributions to the radial currents in the nonhydrodynamic 
solution which are due to nonstationarity are at most of  order (l/R) z. Thus 
to leading order the radial currents are still determined by the hydrodynamic 
part  of  the distribution function. 

APPENDIX  C. THE ACTION OF P ~  ON A N O R M A L  SOLUTION 
OF THE B O L T Z M A N N  EQUATION 

In order to obtain the action of PT  we start from the action of T 
acting o n l y  s. This is obtained by linearization of (3.10) and (3.12) and use of  
(2.15) as 

Tdiq'ys = (v.~)6(r - R) {O(v.~)[-(g[3rn/2)l/2(u.f) + (6n/n + 6T /T )  

- �89 + �89 - ~):Vu] + O ( - v . ~ )  

x [/~m(v.u) + (~n/n + 6T /T )  + (6T/2T)([3mv 2 - 5) 

+ B ( ~ , ~ ) ( v v  - ~ ,~) :Vu  + A(v~)(v.V)(,~r/r)] + O(t/R) ~} (C.1) 

T~q~Ns = (v. f) 6(r - R) {| f)[(1 - c0/3m[(v, u) - 2(v. f)(u. f)] 

- ~(~m/2)1/2(u.~)  + (6n/n + cST/T) 

+ (6T/2T)[(1 - ~)flrnv 2 - 5(1 - ~) - ~] 

+ B(v 2) { Iv - 2(v. f)~] Iv - 2(v. f)~] - �89 2 ~ }: Vu 

+ A (v2)[v - 2(v. f ) f ] .  V(c5 T/T)]  + | - v. ~) 

x [/~m(v.u) + (6n/n + 6T /T )  + (6T/2T)(~mv 2 - 5) 

+ B(v2)(vv - �89 + A(v2 ) ( v .V ) (6T /T ) ]  + O(I/R) 2} (C2) 

In Eq. (C.1), the quantity C1 is a constant. Here we used that ~ ~ l /R 
and that terms containing Vu and V 6 T  are of  order 1/R compared to those 
containing u and 6T, respectively. Next one must let the boundary layer 
propagator  [ P z ( v . V -  L -  T ) P I ] - I  act upon this. To leading order in 
I/R the v-V occurring in here reduces to Vr ~/Or, since the typical length for 
the gradient in this case is the mean free path and on this length scale 
the sphere appears as a flat plate to lowest order. This implies that 
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to leading order in l/R, the propagator leaves the functional forms 
cos O f(vr, v 2, vo 2, r) and sin | vof(vr, v 2, v02~ r) unchanged. 

Let us now first consider Tdi~Ns. The contributions to the sources 
$1, $2, and S 3 from the terms in (C.1) containing gradients of u or 6T are 
always of order l/R compared to contributions from terms without gradients 
and hence can be neglected. The hydrodynamic solutions we consider are 
always linear combinations of ~ l ,  qJ2, qJ3, and qJ4 given in (6.5). For qJ3 
one has 6 n / n + 6 T / T = O ,  for ad 1 and k~/2, 6 T / T - - O  and b n / n ~  
(l/R)(27~fim)1/2(u.f); hence c~n/n + 6TIT  can always be neglected when one 

- -  ^ 

determines hydrodynamic sources from Tdi~NS. Next we consider the 

complete operator T. By considering the tensorial character of the radial 

currents, we can see that to leading order in l/R the operator T couples the 
orthogonal momentum source and the energy source to the radial velocity 
and the temperature jump at the surface of the sphere, and it couples the 
tangential momentum source to the tangential velocity at. the surface. This 
leads to (6.14) in the case that T = Tai. 

Consider next T~. To leading order in l/R this operator couples the or- 
thogonal momentum current to the orthogonal velocity at the surface. The 
operator T,  does not couple the radial momentum current to the temperature 
jump at the surface of the sphere to leading order in l/R, since the integral 
((v'f)T~p(�89 mv2 - 5 ) )  vanishes. J2 and Ja, the tangential momentum 
current and the energy current, are left eigenfunctions of Tsp, which implies 
that for TjdNs the strengths of $2 and S 3 are of order l/R. 

When going from I"~ to T~ we find it useful to use the equality 

T~Pl[Pz(v.  V - L - T~)P•177 

= T~P•177 - L - T~)P•177 (C.3) 

To see this one need only note that 

(T~ - T=)t~Ns = (v.~) a(r - R)@ss 

and that (v. f) 8(r - R)~NS is the exact source of the hydrodynamic solution 
~*s,  which is equal to ~NS outside the sphere and is zero inside the 
sphere. Hence P s ( T ~ -  T=)WNs vanishes. From Eq. (C.3) we can see that 
the radial momentum current is still not coupled to the temperature jump 
at the surface of the sphere to leading order in I/R because (�89 e - 5) is a 
right eigenfunction of T~p with eigenvalue zero. Furthermore, because vo 
is a right eigenfunction of T~p and a left eigenfunction of T~p also with 
eigenvalue zero, it follows that the extra amount of S 2 produced when 

going from T= to T= is of order (l/R) 2. 
Similarly, the energy source resulting from a temperature jump is deter- 

mined by T= acting on (6T/2T)(flmv 2 - 5), but for the energy source resulting 
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from a radial velocity field the transition from T~ to T~ does alter the source 
strength, although it remains of order l /R.  All this results in (6.14) and (6.15). 

A P P E N D I X  13. C A L C U L A T I O N  OF THE H Y D R O D Y N A M I C  
FIELDS G E N E R A T E D  BY T H E  
S O U R C E S  ~1 . . . . .  ~6 

We start with the Fourier-transformed, stationary, linearized Navier- 
Stokes equations in the presence of source terms, which follow from (7.6) as 

n ( i k .  u) = a,(k) (D. 1 a) 

i k ( f l -  ~ 6n + n k  B 6 T )  + qkZu + �89 -= ap(k) (D. l b) 

2k  2 ~ST = ah (D. lc) 

where (D.lc) is obtained by combination of (7.6a) and (7.6c). 
The divergence-free velocity field is obtained from (D.lb) as 

u - (u.k)k = (tlk2)-lE~p - (~p.~)~] (D.2) 

The irrotational velocity field follows from (D.la) as 

u . k  = ( i n k ) -  l a,~ (D.3) 

the temperature field from (D.lc) as 

6 T  = (2k2) - 1G h (D.4) 

and the density field from (D, l a) and (D. l b) as 

6n ~S T fl (~r p . ~ 4r/ ) 
+ -- + an n T n \ ik  3 n (D.5) 

Consider first the fields resulting from the momentum source (in position 
language) a l ( r  ) =(z . f ) f cS( r=R) .  First the Fourier transform of this 
source is needed: 

al (k) = f d r  [exp( - ik. r)](z. ~)f 6(r - R)  (D.6a) 

= ~. [A(k)~ + B(k)f~f~] (D.6b) 

Equation (D.6b) gives the most general vectorial form possible for al(k). The 
functions A and B can be determined by contraction of ff in (D.6a) with 
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the unit tensor and the tensor kk, respectively, yielding 

o r  

3A + B = ['dr [ exp( - ik . r ) ]  6(r - R) = 47zR z sin kR 
2 kR 

+ B = fdr [exp( - ik - r ) ] (k . f )  2 8(r - R) A 

A n2[- sin kR 2 cos kR 2 sin kR~ 
= '+re  ̂L k--R-- + (kR) 2 (kR) 3 J 

4~Re~.f[- coskR sin kRq 
~ l ( k )  = lL 

~s in kR 3 cos kR 3 sin kRT^.) 
+ L (kR)2 - Jkk} (D.7) 

coskR sinkR~ 
~.(I] - kk) (kR): + (kR) 3 J 

(D.9) 

cos kR sin kR~ 
(kR)2 § (kR)3 J 

cos kR sin kR~ 
(kR) 2 + ( ~ ]  (D.10a) 

2R f~  dk 1 Jt/a(kr)J3/2(kR) (D.10b) q(rR) 1/2 o 3A + B -  

4rcR 2 1 ~ exp(ik.r) 
u ( r )  - j d k  

r/ (2re) 3 k 2 

= ~. [A(r)~ + B(r)~f] 

Contraction with ~ yields 

R 2 f  exp(ik.r) [ 
3A + B = --q7~2 dk k2 

- 4R2 f ~  dk sin kr 
o 

From this a divergence-free velocity field is obtained with (D.2) as 

= I coskR sinkR~ u - (u-~,)k 4rcR2 2~-(~ - ~,[Q + (D.8a) 

while the corresponding density field follows from (D.5) as 

4~zR 2 [sin kR cos kR sin kRq 
an = fi z ~ -  I _ k R -  + 2 (kR) z 2 ~ k ~ T J ( z . k )  ~ (D.8b) 

The source at does not contribute to the temperature field and to the 
irrotational velocity field. The spatial velocity and density field are obtained 
by an inverse Fourier transform of (D.Sa) and (D.Sb), viz. 
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where J~ is the ordinary Bessel function. With the aid of Ref. 23, #6.574, 
one obtains 

2 Rz-,.r , 3A + B = ~ /t rl), r > R 
(D.11) 

= (R/q)(1 - re/3R2), r < R 

In a similar way contraction with ff leads to 

R 2 ~ exp(ik.r) ^ ^ 2 [ - -cos  kR sin kRq 
A + B = 2 ~ o d k  ke [ 1 - ( k . r )  3~ (k~) 5 + ( k ~ T  j 

= (1 -- R2/5r2)R2/(3rlr), r > R 
(D. 12) 

= (1 -- r2/5R2)R/311, r < R 

Hence the velocity field has the form 

ii(r) ~ z ({( R2 Rd" ) (3 2t"2' } 
~" grr + ~ W(r) + igk)[1 - W(r)3 

+ 6rr 107r 3 W(r) + 15R [1 - W(r)] ff  (D. 13) 

The density field follows as 

(2~5  f exp(ik.r) [sin kR 
fin(r) = 4fl~R z dk ik k kR + 

2 cos kR 2 sin kR7 ^ 
(kR) ~ (~5~ i f . k )  

f ~  ( sin kr 
- 2flR27zr o dk - c o s k r  + k ~ - J  

• [sin ~:R 2 cos,~R 2 sin,~8](~ ~,) 
L-kR- -  + (kR) 2 (kR~ _] " 

= f lR (~ )ue  f : dk J3/2(kr)[-~ Js/2(kR) + ~ J1/e(kR)J(z'f) 

= �89 2, (~.f) r > R 
= -- 2flr/R, (~. ~) r < R (D. 14) 

All other calculations go in a completely analogous way. For example, a 
momentum source of type ap = i 6 ( r  - R )  becomes in Fourier language 

f sin kR ^ r = dr [exp( - &. r)32~ 6(r - R) = 47tR 2 ~ z (D. 15) 
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from which one obtains, with (D.7), for the source a2 = 2~.(1 - rr) cS(r - R) 

2 ([-sinkR coskR s i n k R]  
a2(k) : 4~R ~ . l k ~ k ~ -  + (kR) 2 (kR~ ~ 

[ s inkR 3coskR  3sinkR]~,f[[  (D.16) 

- k  kR + (kR) 2 J J 

Similarly for the gradient-type momentum source 

a 4' = V.(fl  - �89 6(r - R) 

one obtains 

a4,(k) = ~. f dr [exp(_ik.r)][ff(ik.r) _ 1 ~ik] 6(r - R) 

{i ( 3cos   
3(sin kR 3 cos kR 3 sin k R \  ~A3, 

+ \ - ~ - - +  (kR) 2 ( ~ g ) k k J  

2 (cos kR sin kR\^~]  
3 \ ( kR~)kk~  (D.17) 

By performing inverse Fourier transforms one can obtain again the fluid 
fields as function of position both outside and inside the sphere. 

From the results obtained here one can also derive Eq. (7.9). On corn- 
paring (D.17) with (D.7) and (D.10), one finds that (7.9) would be 
satisfied if only the last term of the form 

[ sin kR] (~. k)k[ cos kR (k-R~ .] 

were not present on the right-hand side of (D.17). However, this term does 
not contribute to the velocity field, as follows from (D.2) and (D.3); and 
its contribution to the density field is of the form (~.f) 6(r - R). (This is 
most easily seen by Fourier transforming the latter expression.) Looking back 
to (D.1), one easily understands the possibility for such a singular solution; 
with a velocity source V(~.f) 6(r - R), a density field fl(~.f) cS(r - R) plus 
a vanishing velocity field indeed solve the hydrodynamic equations. A similar 
6 function in the density field is generated by the density source 0-6, as 
follows from (D.5). In the density field generated by S~, given by (7.21) 
and (7.18b), both 6-function contributions cancel each other. 

Table I i'~sts the hydrodynamic fields resulting from any given source 
term. The content of this table is entirely equivalent to (7.12)-(7.13). 
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