
ar
X

iv
:c

on
d-

m
at

/0
01

13
36

v1
  2

0 
N

ov
 2

00
0

Equilibrium crystal shapes in the Potts model
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The three-dimensional q-state Potts model, forced into co-
existence by fixing the density of one state, is studied for
q = 2, 3, 4, and 6. As a function of temperature and number
of states, we studied the resulting equilibrium droplet shapes.
A theoretical discussion is given of the interface properties
at large values of q. We found a roughening transition for
each of the numbers of states we studied, at temperatures
that decrease with increasing q, but increase when measured
as a fraction of the melting temperature. We also found equi-
librium shapes closely approaching a sphere near the melting
point, even though the three-dimensional Potts model with
three or more states does not have a phase transition with a
diverging length scale at the melting point.

I. INTRODUCTION

If a binary mixture of fixed composition is brought
into a coexistence state it will phase-separate into two
pure phases, separated by an interface with a shape that
minimizes the free energy of the system [1]. The phase
with the smaller volume will typically organize itself into
a compact shape, known as the equilibrium shape. If
the surface tension (excess free energy per unit inter-
face area) is isotropic, this equilibrium shape will be a
sphere. If either of the co-existing phases is crystalline,
the anisotropic surface tension will lead to an aspheric
equilibrium crystal shape (ECS). The ECS and the ori-
entation dependence of the surface tension are intimately
related. Once the surface tension is known for all orien-
tations, the so-called Wulff construction [2,3] allows the
generation of the ECS. The reverse is also possible, i.e.,
determining the surface tension as a function of orienta-
tion from the ECS; this is a procedure followed in this
manuscript.

The ECS has been the subject of experimental stud-
ies [4–11]. One striking feature the ECS may show
is a roughening transition: the disappearance of facets
(macroscopically flat surfaces) under rising temperature.
In practice equilibrium shapes are rarely seen and they
are hard to produce experimentally, but this does not
mean they are without practical importance. For exam-
ple the presence or absence of facets in the ECS influ-
ences growth properties, such as the speed of growth and
the growth mode, even though growth shapes may dif-
fer strongly from the ECS. In general, the determination
of the orientation dependence of the surface tension is
a tough problem. Experimentally it is very difficult to

measure, mainly due to equilibration problems. Numer-
ical studies suffer from the same equilibration problems,
and in the most common simulation techniques each sur-
face orientation requires a separate simulation. Theoret-
ical results only have been obtained for simplified models
like the BCSOS model [12].

The prototypical model in which such properties are
studied numerically, is the conserved-order-parameter
Ising model with nearest-neighbor interactions, in which
the total magnetization is kept constant. In the two-
dimensional Ising model, the ECS is a square at zero tem-
perature, but at any finite temperature the ECS looses all
flat faces. It gradually changes into a circle when the tem-
perature is approaching the critical temperature. The be-
havior is richer in the three-dimensional Ising model. At
zero temperature, the ECS is a cube. At finite temper-
atures below the roughening temperature TR, the ECS
still has macroscopically flat faces but the corners as well
as the edges are rounded. Above the roughening temper-
ature, the ECS does no longer feature macroscopically
flat faces. If the temperature is increased from the rough-
ening temperature to the critical temperature, the ECS
gradually approaches a sphere.

An extension of the Ising model is the Potts model,
defined by the Hamiltonian

H = −J
∑

〈i,j〉

δ(σi, σj), (1)

in which J is the coupling constant, δ denotes the Kro-
necker delta function, and the summation runs over all
pairs of nearest-neighbor sites, each having a spin with
value σ = 1 . . . q. Note that the two-state Potts model
is equivalent to the Ising model. The topic of this
manuscript is to study how the ECS and related prop-
erties such as the roughening temperature behave with
increasing number of states. Like in two dimensions the
model undergoes a phase transition at a temperature we
will refer to as the melting temperature Tm. Below this
temperature the model has q different phases, each of
which is dominated by one of the q possible spin values,
whereas for temperatures above Tm there is only a sin-
gle phase in which on average all of the spin values are
present in equal amounts. It is known that for q ≥ 3
the melting transition is of first order [13], in contrast
to the two-state (Ising) case where the transition is con-
tinuous. It is therefore not clear a priori whether there
is a roughening transition when q ≥ 3, nor in how far
the ECS should approach a sphere when T approaches
TR. Furthermore, one should expect the surface tension
to approach a non-zero limit as the melting temperature
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is approached from below, whereas for continuous tran-
sitions it vanishes in this limit.

The manuscript is organized as follows. First, in sec-
tion II we outline the numerical procedure to efficiently
determine the ECS and show the resulting shapes for all
numbers of states for which accurate numerical estimates
of the melting temperature have been reported: q = 2
(Ising), 3, 4 and 6. In section III we present some the-
oretical considerations on the behavior of the model for
large values of q. Section IV covers the measurements on
the location of the roughening transition. In section V
we present the orientation-dependent surface tension as
extracted from the data on the ECS. We conclude with
a discussion of the results and an outlook to further re-
search.

II. OBTAINING THE ECS

Equilibrium shapes can be determined numerically for
the q-states Potts model by forcing it into coexistence.
This may be achieved by enforcing a constraint on the
spin densities. The richest behavior is observed in case
the maximum of q−1 constraints are enforced, but mostly
the resulting configurations are still determined by the
orientation dependence of the surface tension, and can
thus be obtained indirectly from numerical simulations
with a single constraint enforced.

The constraint enforced in our simulations is the con-
servation of the density of state 1, while the densities of
all other states are allowed to fluctuate freely. To im-
plement this, we combined a density-conserving cluster
algorithm, described in a recent article [14], with Glauber
dynamics [1], constrained to never flip spins into or out
of state 1. We chose the ratio of cluster updates and
Glauber updates per site to be unity (i.e., a comparable
amount of computational effort was spent to each). The
run-times of the simulations varied between 400 000 and
800000 Monte Carlo updates per site and we typically al-
lowed the system to thermalize for 60 000 to 100 000 time
steps. The lateral system size was 50 sites in all lattice
directions, with periodic boundary conditions, and the
fraction of conserved spins was typically 0.25. In order to
directly obtain the ECS we repeatedly took ”snapshots”
of the evolving system, each time centering the cluster
around the origin. Taking the autocorrelation time into
account, we typically obtained 2000 independent equilib-
rium snapshots from one simulation. At the end we cal-
culated the time-averaged density profile of the conserved
component. Our results for the ECS were obtained from
the 50% iso-density surface in this time-averaged density
profile.

In figure 1, we show the equilibrium crystal shapes for
several temperatures, for the case of q = 2 (Ising), 3,
4, and 6 states, respectively. These shapes are obtained
from the 50% iso-density surface in the density profile,
after full symmetrization, i.e. after we averaged over all

48 possible invariant mirror images of the cube.
The simulation temperatures are chosen as fractions

of the estimates for the melting temperatures reported
in Refs. [15–17]; these values are given in table I.

FIG. 1. Symmetrized Equilibrium Cluster Shapes. From
top-left to bottom-right, the boxes show the shapes for the 2,
3, 4 and 6-state Potts model, successively. Within each box,
again from top-left to bottom-right, the temperature increases
from 0.25 Tm to 0.80 Tm, in increments of 0.05 Tm.

III. BEHAVIOR FOR LARGE q

For large values of q the thermal evolution of the ECS
can be understood from the following arguments. First
of all notice that at low temperatures the q phases of
the q-state Potts model without conservation laws will
be very close to the zero temperature phases in which all
spins on the lattice have equal value. In d dimensions the
free energy per site f of these states therefore satisfies

f(Tlow ) ≈ −dJ. (2)

The high temperature phase is completely dominated by
the entropy resulting from the q different occupation op-
tions for each site, with a resulting entropy per site of
kB ln q and free energy

f(Thigh) ≈ −kBT ln q. (3)
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The melting temperature is obtained to a good approxi-
mation by equating these two expressions, with the result

βmJ ≈
1

d
ln q (4)

for large q, with β = 1/kBT . Note that for d = 2 this is
in agreement with the exact result [17] βmJ = ln(1+

√
q).

For large q one sees that J ≫ kBT for temperatures be-
low Tm. Therefore local excitations, typically consisting
of single overturned spins, will be extremely rare in the
low temperature phases, as they require an energy far
exceeding the gain in free energy due to the entropy in-
crease. Similarly the tendency to form clusters of equal
spin in the high temperature phase is very weak, as the
resulting gain of energy by far does not compensate the
resulting loss of entropic free energy. As a result the
melting transition for high q will become very sharp.

Now we can also estimate the orientation dependence
of the surface tension. In good approximation, an inter-
face of 001-orientation (or symmetrically equivalent) is
just a flat interface between two pure states, with a free
energy of J (one broken bond) per unit area. Similarly,
by counting broken bonds, one finds that an interface of
kl1-orientation (here k and l are not necessarily integers)

has an energy per unit area of (1 + k + l)/
√

1 + k2 + l2.
For non-zero temperature there is an additional contribu-
tion from the entropy of the steps required to form such
an interface. For not too large values of k and l this may
be obtained by multiplying the step density needed to
create a surface of orientation kl1 with the meandering
entropy of such a step. The resulting expression is.

f(T ) =
(1 + k + l)J − kBT ln

[

(k + l)k+l/(kkll)
]

√
1 + k2 + l2

. (5)

This result is independent of the value of q, especially it
also holds for the Ising model. Excitations creating spins
not belonging to the two phases that coexist at the inter-
face are so rare that they may be neglected completely.
For k/l or l/k ≪ exp(−βJ) the entropy becomes domi-
nated by thermal step fluctuations, but this concerns an
extremely small range of orientations only (However, it
does set the distance between facet edges). Blöte and
Hilhorst [18] give expressions for the free energy from
which the low temperature ECS may be obtained for all
orientations.

The unimportance of all but the two coexisting phases
implies that for large q the 001-facets do not roughen,
as Tm is well below the roughening temperature of these
facets in the Ising model (see Section IV). The equilib-
rium shape then remains nearly cubic for all tempera-
tures up to Tm.

IV. LOCATION OF THE ROUGHENING

TRANSITION

Roughening transitions of crystal surfaces are char-
acterized by the disappearance of macroscopically flat

regions, or facets, in the ECS. Facets existing at low
temperatures often disappear when the temperature in-
creases, at a characteristic temperature known as the
roughening temperature TR of the specific facet orien-
tation. At this temperature the inverse radius of cur-
vature (Rc)

−1 of the crystal surface at the center of
the facet jumps from zero (when a facet is present) to
a non-zero value. Using renormalization-group calcula-
tions, Jayaprakash et al. [19,12] showed that the size of
this jump satisfies the universal relationship

Rc =
z0kTRπ

2γ0

, (6)

where z0 is the distance from the tangent plane at the
facet to the center of mass of the crystal, and γ0 is the
surface tension of the 001-facet at T = TR. The latter
is not known exactly for any of the q-state Potts models
in three dimensions. An approximation consisting of the
ground state value plus the first correction term in a low
temperature expansion is

γ0 = βJ − 2e−4βJ . (7)

It will turn out that this approximation suffices for our
goal: even for the smallest q-values the contribution of
the correction term at T = TR is already smaller than
the estimated systematic error in the curvature measure-
ments.

If the center of mass of the ECS is placed at the origin,
the centers of the facets that are present below the rough-
ening temperature are located on the principal axes. To
estimate the location of the roughening transition, we
first measure the curvature at the six points where the
ECS (obtained as in the previous section) cuts a principal
axis, in the two principal directions tangential to the sur-
face. The curvature was obtained by fitting a quadratic
function y = y0 − 1

2
y1x

2; the fitted result for y1/y0 is
the normalized inverse radius of curvature. Since we use
a non-zero fitting range, the slope of the curve cannot
become infinite and consequently we do not observe a
jump in curvature; in fact we find quite smooth depen-
dence of curvature on temperature, as a result of finite
size, round-off and fluctuation effects. However, we made
sure that our procedure to estimate TR is not very sen-
sitive to this. Notably our estimate of the roughening
temperature for the Ising model is close to previous esti-
mates: Adler reported TR/Tm = 0.55± 0.02 [20], Mon et
al. reported TR/Tm = 0.54 ± 0.02 [21], and Holzer and
Wortis reported TR/Tm = 0.545± 0.004 [22].

The resulting measurements of the normalized inverse
curvature are plotted in figure 2. The error bars indi-
cate the statistical error; additional simulations for some
points indicate that the systematic errors arising from
the effects of thermalization, cluster shape deformations,
long lived thermal excitations, etc., are larger. In the
same plot, the curves described by Eq. (6) are also plot-
ted. The intersection points of these two curves are esti-
mates of the location of the roughening transition. The
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resulting values for the roughening temperature can be
found in table I; the error indications are our estimates
of the statistical and systematic errors combined.

In the previous section we noted that for large q there
is no roughening transition. Obviously q = 6 is not large
enough to observe this, but the increase of TR/Tm is very
clear. It would be interesting to know the largest q-value
for which a stable roughening transition does exist. The
values of βJR quoted in table I combined with the esti-
mate of Tm of Eq. (4) suggest a value between 20 and
40. With the present method this would make simula-
tions very slow, and it would also require an accurate
measurement of the melting temperatures, since no liter-
ature values exist.

Roughening temperatures, q-state Potts-model

q βJR βJm TR/Tm βJm(2D)

2 [15] 0.84(2) 0.443309(2) 0.53(3) 0.8813
3 [16] 0.86(2) 0.5505(1) 0.64(3) 1.0051
4 [17] 0.89(2) 0.631(2) 0.71(3) 1.0986
6 [17] 0.93(2) 0.751(2) 0.81(3) 1.2382

TABLE I. Inverse transition temperature, ratio of the
roughening and transition temperatures and inverse roughen-
ing temperature of the q-states Potts model. The references
in the first column point to the sources we used for the data
on the transition temperatures. For comparison we added the
critical interaction parameter βJm = log(1 +

√

q) for the two
dimensional Potts model in the last column.
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FIG. 2. Normalized inverse curvature for the Potts model
with q = 2 (pluses), 3 (crosses), 4 (stars) and 6 states
(squares). The intersection points of the lines, described by
Eq. (6), and the data points are estimates for the roughening
temperature TR.

V. ORIENTATION DEPENDENCE OF THE

SURFACE TENSION

In general, the surface tension γ can be written as γ =
γ0γ(n̂), where γ0 is the surface tension of an interface
oriented in the 001, or symmetrically equivalent direction
[12]. In experiments with Pb crystals in equilibrium with
their vapor, Heyraud and Métois used the inverse Wulff
construction (see Ref. [12]) to obtain the angular part of
the surface tension γ(n̂) as a function of orientation n̂ and
the same method has been employed by Surnev et al. [10].
Here we use it to obtain the orientation dependence of
the surface tension for each ECS as obtained in section
II.

The surface tension γ(n̂) is proportional to the dis-
tance from the center of the cluster to the tangent plane
perpendicular to n̂, touching the iso-surface in the point
~X. If the ECS is scaled such that the distance to the sur-
face from the center of the shape along the lattice axes
is unity, then

γ(n̂) = max
I

n̂ · ~X, (8)

where ~X is an element of the scaled iso-surface I. Thus,

for every direction n̂, we have to find the point ~X in the

iso-surface, for which the number n̂ · ~X is maximal. This
procedure works in both two and three dimensions.

Using ECS’s obtained from fully symmetrized density
profiles, we measured γ(n̂) along the arc in the 11k-zone,
which connects the 001, 111 and 110 directions. Figure 3
shows the results.
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FIG. 3. Angular part of the surface tension γ(n̂) as a func-

tion of orientation n̂, measured along the arc that connects
the 001 (at Θ = 0), 111 (at Θ = 0.955) and 110 directions
(at Θ = π/2, where θ is the azimuthal angle). From top to
bottom the plots show the 2, 3, 4 and 6 states results. In each
plot, from the uppermost curve downwards, the temperature
ranges from 0.25 Tm to 0.80 Tm, in increments of 0.05 Tm.

These figures show that the angular dependence of
the surface tension becomes nearly constant at increas-
ing temperature, for all numbers of states q considered
here. Thus, for q ≤ 6 the ECS approaches a sphere. For
the Ising model (q = 2) this was to be expected, since
this model undergoes a continuous phase transition at
the melting point. On the other hand, it is also clear

that aspheric deviations become larger with increasing q.
As we saw in Section III the ECS becomes nearly cubic
for large q. Obviously q = 6 still should be considered a
small q-value in this context.

If the ECS is not faceted, the angular part of the sur-
face tension will approach the point Θ = 0 with zero
slope. If however the ECS has 001 facets, the approach
to the point Θ = 0 will occur with a non-zero slope,
resulting in a cusp in the slope along the arc through
this point [12]. Looking for the temperature where these
cusps first appear is an alternative way to measure the
roughening temperature. We found this to be less ac-
curate than the procedure described in section IV. The
results were however consistent.

VI. DISCUSSION AND FUTURE RESEARCH

We studied the Potts model with q = 2, 3, 4, and 6
states, forced into coexistence by fixing the density of
one state. The resulting ECS was studied as a function
of temperature and number of states.

We found that the roughening transition, which is well
known for the Ising model (equivalent to the two-states
Potts model), persists for higher numbers of states, at
least up to six states. The temperature TR at which this
roughening transition occurs, measured as a fraction of
the melting temperature, tends to increase with increas-
ing number of states.

In the future, we want to study the more general and
richer behavior of the ECS in case more than one quantity
is conserved. For instance, in the three-state Potts model
close to its melting point, with the constraint ρ1 ≫ ρ2 ≥
ρ3, the ECS resembles the shape of two soap bubbles
with a common interface; this changes under variations
of temperature and the ratio ρ2/ρ3.

We also want to look at equilibrium shapes in con-
strained geometries, like fluids between parallel plates,
or systems with grain boundaries.

Finally we are investigating the behavior for larger q-
values with the aid of different Monte Carlo techniques.
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[6] J.M. Bermond, J.J. Métois, J.C. Heyraud and F. Floret,

Surf. Sci. 416, 430 (1998).
[7] A. Pavlovska, K. Faulian and E. Bauer, Surf. Sci. 221,

233 (1989).

5



[8] A. Pavlovska, D. Dobrev and E. Bauer, Surf. Sci. 286,
176 (1993), Surf. Sci. 314, 341 (1994).

[9] S. Surnev, P. Coenen, B. Voigtländer, H.P. Bonzel and
P. Wynblatt, Phys. Rev. B 56, 12131 (1997).

[10] S. Surnev, K. Arenhold, P. Coenen, B. Voigtländer and
H.P. Bonzel, J. Vac. Sci. Technol. A 16, 1059 (1998).

[11] K. Arenhold, S. Surnev, H.P. Bonzel and P. Wynblatt,
Surf. Sci. 4242, 271 (1999).

[12] H. van Beijeren and I. Nolden, The Roughening Transi-
tion, in W. Schommers and P. von Blanckenhagen (Ed.),
Structure and Dynamics of Surfaces II (Topics in Cur-
rent Physics 43), Springer Verlag, Berlin, 1987.

[13] G.T. Barkema and J. de Boer, Phys. Rev. A 44, 8000
(1991).

[14] R.P. Bikker and G.T. Barkema, Phys. Rev. E. 62, 5830
(2000).
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