Erratum

The paper by Henk van Beijeren on "Mode coupling theory for purely diffusive systems," which appeared in J. Stat. Phys. 35: 399 (1984) contains a number of errors, which are listed below. Corrected copies of the manuscript can be obtained from the author at the following address:

Institut für Theoretische Physik A
 RWTH

Templergraben 55
5100 Aachen-West Germany
The quantities $C_{x y}$, as defined in Eq. (4) are no direct correlation functions according to standard definitions. Denoting the latter as $\widetilde{C}_{\alpha \gamma}$ one obtains the following relation between the two quantities:

$$
C_{\alpha \gamma}=c_{\alpha}^{-1} \delta_{\alpha \gamma}-\tilde{C}_{\alpha \gamma}
$$

Equation (5) should read

$$
\frac{\partial}{\partial t} \mathbf{c}(\vec{r}, t)=\nabla \cdot \int d \vec{\rho} \int_{0}^{t} d \tau \overline{\vec{d}}(\rho, \tau) \circ \nabla \mathbf{c}(\vec{r}-\vec{\rho}, t-\tau)
$$

Equation (6) should read

$$
\left[z+k^{2} \overline{\bar{D}}(k, z)\right] \circ \hat{\mathbf{c}}(\vec{k}, z)=\hat{\mathbf{c}}(\vec{k})
$$

The left-hand sides of Eqs. (9) and (17) should be multiplied by a factor $1 / V$.

The second term on the right-hand side of Eq. (10c) must be multiplied by V. The first term on the right-hand side of Eq. (13) obtains a sign.

Equation (14) should read

$$
\begin{aligned}
& \overline{\bar{L}}(k, z) \\
& =\left\{1-\frac{k^{2}}{z V}\langle[\vec{k} \cdot \hat{\mathbf{j}}(-\vec{k})][\hat{\vec{k}} \cdot \hat{\mathbf{j}}(\vec{k}, z)]\rangle \circ \overrightarrow{\mathbf{C}}\right\}^{-1} \circ \frac{1}{V}([\hat{\vec{k}} \cdot \hat{\mathbf{j}}(-\vec{k})][\hat{\vec{k}} \cdot \hat{\mathbf{j}}(\vec{k} z)]\rangle
\end{aligned}
$$

The quantities $\bar{\phi}^{(2)}(t)$ and $\bar{\phi}^{(4)}(t)$ appearing in (18) and (19), respectively, are tensors. Also in (19), the upper bound on the integral over τ must be t^{\prime}.

The sentence below (24) should read "Inserting (22) into..." Equation (26) should read

$$
\begin{aligned}
& \frac{1}{V^{2}}\left\langle\hat{c}_{\alpha}(\vec{q}) \hat{c}_{\beta}(\vec{k}-\vec{q}) \hat{c}_{\gamma}(\vec{l}) \hat{c}_{\delta}(-\vec{k}-\vec{l})\right\rangle=\frac{1}{V^{2}}\left[\delta_{\vec{q},-\vec{l}}\right. \\
& \quad \times\left\langle\hat{c}_{\alpha}(\vec{q}) \hat{c}_{\gamma}(-\vec{q})\right\rangle\left\langle\hat{c}_{\beta}(\vec{k}-\vec{q}) \hat{c}_{\delta}(\vec{q}-\vec{k})\right\rangle+\delta_{\vec{q}-\vec{k}, \vec{l}}\left\langle\hat{c}_{x}(\vec{q}) \hat{c}_{\delta}(-\vec{q})\right\rangle \\
& \left.\quad \times\left\langle\hat{c}_{\beta}(\vec{k}--\vec{q}) \hat{c}_{\gamma}(\vec{q}-\vec{k})\right\rangle+\delta_{\vec{k}, 0}\left\langle\hat{c}_{\alpha}(\vec{q}) \hat{c}_{\beta}(-\vec{q})\right\rangle\left\langle\hat{c}_{\gamma}(\vec{l}) \hat{c}_{\delta}(-\vec{l})\right\rangle\right] \\
& \quad+O\left(\frac{1}{V}\right)
\end{aligned}
$$

In (27) the expression $\{\overline{\bar{A}}(-\vec{q},-\vec{k})+\overline{\overline{\bar{A}}}(\vec{q}-\vec{k},-\vec{k})\}$ should be replaced by $\{\overline{\bar{A}}(-\vec{q},-\vec{k})+\overline{\bar{A}}(\vec{q}-\vec{k},-\vec{k})\}$ and the combination $\left(z-k^{2} \overline{\bar{D}}^{+}\right)^{-1}$ appearing at the end of this equation must be replaced by $\left(z+k^{2} \overline{\bar{D}}^{+}\right)^{-1}$.

Equation (28) should read

$$
\begin{aligned}
\Delta \overline{\bar{L}}(k, z)= & \left.\frac{-1}{2 V^{3} k^{2}} \sum_{\vec{q}}\{\overline{\overline{\bar{A}}}-\vec{q},-\vec{k})+\overline{\overline{\bar{A}}}(\vec{q}-\vec{k},-\vec{k})\right\} \\
& \therefore\left(z+q^{2} D^{(1)}+|\vec{k}-\vec{q}|^{2} D^{(2)}\right)^{-1} \\
& \therefore\left\langle\hat{\mathbf{c}}^{(1)}(-\vec{q}) \hat{\mathbf{c}}^{(2)}(\vec{q}-\vec{k}) \hat{\mathbf{c}}(\vec{q}) \hat{\mathbf{c}}(\vec{k}-\vec{q})\right\rangle \\
& \therefore\left\{\overline{\bar{A}}^{+}(\vec{q}, \vec{k})+\overline{\bar{A}}^{+}(\vec{k}-\vec{q}, \vec{k})\right\}
\end{aligned}
$$

Equation (29) should read

$$
\phi^{4}(t)=\frac{\left\{(\partial D / \partial c) \lim _{k \rightarrow 0}(1 / V)\langle\hat{c}(-\vec{k}) \hat{c}(\vec{k})\rangle\right\}^{2}}{2(2 \pi)^{d}} \int d \vec{q} e^{-2 D q^{2} t}
$$

The relations for $D_{s}(k, z)$ and $\phi_{s}(k, t)$ given below (41) should read

$$
D_{s}(k, z)=\frac{L_{\mathrm{IIII}}(k, z)}{\left[c_{t}\left(1-c_{t} / c\right)\right]}
$$

and

$$
\phi_{s}(k, t)=\frac{\phi_{\mathrm{IIII}}(k, t)}{\left[c_{t}\left(1-c_{t} / c\right)\right]}
$$

respectively.

