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Fluctuations in the Motions of Mass and of Patterns 
in One-Dimensional Driven Diffusive Systems 
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The stochastic spreading of mass fluctuations in systems described by a 
fluctuating Burgers equation increases as t 2/3 with time. As a consequence the 
stochastic motion of a mass front, a point through which no excess mass current 
is flowing, is shown to increase as t 1/3. The same is true for the stochastic 
displacement of mass points and shock fronts with respect to their average 
drift, provided the initial configuration is fixed. An additional average over 
the stationary distribution of the initial configuration yields stochastic dis- 
placements, increasing with time as t ~/2. 

KEY WORDS:  Burgers equation (fluctuating); diffusion (anomalous); 
density fluctuations. 

1. I N T R O D U C T I O N  

A simple model for one-dimensional driven diffusion is the asymmetric sim- 
ple exclusion model. In this model the sites of a one-dimensional lattice are 
either empty or occupied by a single particle and the particles may jump 
to empty neighboring sites with jump rates pF and ( 1 - p ) F  for jumps to 
the right and to the left, respectively. To be specific I will assume 
1/2 < p ~< 1. The simplest stationary state for this system is given by the 
product measure, for which the probability of finding any site occupied is 
c, the average occupation number, independently of the occupation 
numbers (0 for an empty site, 1 for an occupied one) of all the other sites. 

A number of results concerning the motions of particles as well as 
density patterns in this system have been obtained. The average motion 
of a tagged particle in the stationary state is a diffusive motion with 
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diffusion constant ( p - � 8 9  2 around a drift with speed v =  
( 2 p - 1 ) ( 1 - c ) F a .  (1"2) The average is performed both over the random 
motion of the particles and over the random initial distribution of the 
untagged particles. On the other hand, if one fixes the initial configuration, 
the tagged particle, on a length scale that is scaled by t 1/2 with time, for 
t--* oe does not fluctuate around its average drift, as determined by the 
initial configuration. (3) 

Similarly, the position of a shock wave, if averaged over both 
stochastic dynamics and initial distribution, performs a diffusive motion 
around an average drift, whereas for a fixed initial configuration its motion 
with respect to the average drift induced by the initial configuration 
becomes fixated for t ~ ~ on a length scale ~,/1/2,(3) 

Density fluctuations move at an average drift speed 2 w = (O/~c)(cv) = 
( 2 p -  1)(1 - 2 c )  Fa. The spreading of such a density fluctuation around its 
average drift is faster than diffusive; it increases as t 2/3, if one does a 
combined averaging over the stochastic dynamics and the initial distribu- 
tion. This was shown nonrigorously by applying renormalization group 
methods/4) or a mode coupling expansion (5) to the fluctuating Burgers 
equation, which provides a macroscopic description of the asymmetric 
simple exclusion process. For fixed initial configurations the spreading of a 
density profile, to my knowledge, has not been studied before. 

A microscopic way of describing these density fluctuations is the 
addition of so-called second class particles and holes (empty sites), which 
move and evolve in such a way that the motion of the remaining (first 
class) particles and holes remains completely unchanged, while the 
evolution of the system as a whole remains that of the simple exclusion 
model. (6) That is: second class particles may jump to neighboring empty 
sites at the same jump rates as the first class particles, a first class particle 
may change positions with a neighboring second class particle in the same 
way as though the latter were an empty site. If a second class particle and 
a second class hole exchange places, both are promoted to first class 
objects of the same kind as before. Finally, if a second class particle and a 
second class hole are on neighboring sites, the pair may be promoted to 
first class objects without exchanging positions at the rate ( 1 - p ) F ,  
respectively pF, if the particle is to the left, respectively to the right, of the 
hole. The average motion of a single second class particle or hole is 
precisely that of a density fluctuation. However, if one has a finite density 
of them, the motion of a single second class object also depends on its 
interaction with the other ones. For a constant density of second class 

2 Compare to the case of ripples on a water surface, where the velocity of the ripples may be 
quite different from the velocity of the water. 
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particles, with no second class holes, the motion of a single second class 
particle is expected to have similar characteristics as the motion of a first 
class particle: diffusion around an average drift if one averages over 
dynamical fluctuations and initial conditions both, subdiffusive behavior if 
one fixes the initial configuration. (7~ 

In this paper I will use the methods and results of ref. 5 to investigate 
the properties summarized above. It will turn out that the diffusive 
behavior obtained for combined averages is entirely due to fluctuations in 
the mass train passing some given point, due to the fluctuations in the 
density pattern passing this point. If one fixes the initial configuration, or 
alternatively lets the point through which the mass train passes move with 
the average speed at which the density pattern moves, the fluctuations in 
the passing mass train are strongly reduced. Then one finds that the motion 
of a first class particle, or that of a second class particle constrained to 
move between second class neighbors at distances that on average remain 
constant in time, shows a spreading around the average drift, increasing 
with time as t 1/3. A simple physical argument allows one to relate this to 
the t 2/3 spreading of a density fluctuation. 

2. F L U C T U A T I O N S  IN T H E  M O T I O N  OF M A S S  

Macroscopically the time evolution of the systems of interest to us can 
be described by the fluctuating Burgers equation 

~p(x, t) -~p2(x,  t) ~2p(x, t) ~j(x, t) 
+ D  - -  (1) 

~?t 0x 0x 2 ~x 

where p(x, t) is the deviation at position x and time t from an average 
density. This equation describes the system in a coordinate system moving 
with the pattern velocity w and employs dimensionless variables. The 
random current j (x,  t) is assumed to be Gaussian noise with variance 
satisfying 

(](x ,  t) ](x', t') ) = 2 D a ( t -  t'){ (p(x,  t) p(x', t) ) - (p(x, t) ) (p(x ' ,  t))} 
(2) 

where the brackets denote an average over the stochastic dynamics. To 
apply this to the simple exclusion process, one has to choose for x and t 
the dimensionless variables x/a a n d  ( 2 p -  1)cFat,  respectively, in which 
case D in Eq. (1) takes the value (1-c) /2c /5~ In addition p is to be 
interpreted as the coarse-grained local deviation of the particle density 
from its average value c. In ref. 5, Eq. (1) was solved iteratively by applying 
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a Fourier transform with respect to x, treating the nonlinear term -~p2/c3x 
formally as a perturbation to the other two terms, and using (2). From the 
structure of the resulting equation it then followed that the average of the 
time correlation function of the Fourier transform of the density ~(k, t) for 
long times and small k is of the form 

((~(k, t) ~(k', 0) ~) = 2~rG(kt 2/3) S6(k + k') (3) 

with limx ~ o G(x) = 1, lim~_ co G(x) = 0. Now the inner brackets denote the 
average over the stochastic dynamics and the outer brackets that over the 
stationary Gaussian distribution for p(x,O). In order to obtain these 
results, one has to impose the condition that in the static correlation 
function ((~(k, 0)~(k' ,  0 ) ) ) =  S~(k + k') the factor S can be treated as a 
constant for small k [for the simple exclusion model one has in fact S(k) = 
c ( 1 -  c) for all k]. 

Now consider the "mass" flowing through an interface moving at a 
constant speed s. Its current satisfies the continuity equation 

-~ pIx + st, 0 =  - ~xjs(X, t) 

- ax  { j ( x  + st, t)  - s p ( x  + st, t) } (4) 

where j(x, t) and j,(x, t) are the current densities in a resting coordinate 
frame and in a coordinate frame moving with the speed of the interface, 
respectively. After subtracting from is(x, t) its average value ((Js)) [-for the 
simple exclusion model ((Js)) has the value c (v - s ) ,  but for what follows 
this is not important]  one finds its Fourier transform j,(k, t) to be welt- 
behaved at k = 0 .  Equation (4) may then be represented as a Fourier 
integral, and an integration over time yields the result 

f~ ~.~f~ 1 M(x( t ) , t )=  dz { j ~ ( O , z ) - ( ( j s ~ } =  _ dk~{~(k ,O)-e ikx~O~(k, t )}  

(5) 

where x ( t )=s t  is the position of the interface at time t. Obviously, 
M(x(t), t) is the excess mass flowing through an interface moving from 
x = 0 to x = x(t) during the time period from 0 to t, and in fact the actual 
way in which this motion is performed is irrelevant. In the simple exclusion 
process this excess mass flow may be related to fluctuations in the positions 
of particles in the, neighborhood of the interface. Let the particles be num- 
bered sequentially . . . .  1, 0, 1 -.. from the left to the right and let n~(t) be 



Fluctuations in 1 D Driven Diffusive Systems 51 

the number of the rightmost particle to the left of the interface. Then 
M s ( t ) = - ( n s ( t ) - ( ( n s ( t ) ) ) ) .  However, since for all times the average 
spacing between neighboring particles is 1/c, the position with respect to 
the interface of the particle labeled ent(((ns(t)))) equals M,(t)/c, and if 
iMs(t)l~>l, '  the fluctuations in this relative position are small, of 
O(IMs(t)rI/z). The same observation has been made before, in slightly 
different form, by Alexander and Pincus. (9/The right-hand side of (5) may 
be used to calculate the variance of M s . If one averages both over the 
stochastic dynamics and the initial distribution, one obtains, with the aid 
of (3), 

(( M~(t) )) = (S/K) f~ dk [1 - cos (ks t )  G(kt2/3) ]/k 2 

f ~st = (Sst/~) dx [1 - cos xG(x/stl/3)]/x 2 
-- rest 

= Sst[1 + O(s-2t-2/3)] (6) 

For s # 0 this implies that for long times (i.e., t ~> s -3) the fluctuation in the 
excess mass passed through the interface increases as t in. In particular, if 
in the simple exclusion process one considers the displacement Ax(t) of a 
first class particle with respect to its average drift vt, one has to set 
s = v - w = c and S = c(1 - c). This yields, in unscaled units, 

(((Ax(t))2)) = (1 - c)(2p - 1) Fa2t (7) 

in agreement with the results of refs. 1 and 2. For s = 0 ,  substitution of 
x = kt 2/3 in (6) yields 

((M,2(t))) St2/3 f~,2/3 
= 4 x  [ 1  - G ( x ) ] x  2 (8) 

7"[ 7rt2/3 

Hence the excess mass flow through an interface moving at speed w 
[corresponding to zero speed in the coordinate frame of ( l ) ]  increases with 
time as t ~/3. To obtain the average variance of M,(t) for fixed initial 
configurations one may consider two different realizations p~(x, t) and 
p2(x, t) that start out from the same initial configuration, but have 
independent stochastic currents ]l(x, t) and ]2(x, t). Then the difference 
between the mass flows in 1 and 2 satisfies the identity 

(( [M~(x ,  t) - M~(x,  t)]2 )) 

= ( ( { [ M i ( x t ) -  (Ml(x t )> ] -- [M2(x, t ) -  <M2(x, t)>] }2)) 
= 2<< [M(x, t ) -  <M(x, t)>]2>) (9) 
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Inserting (5), one may derive 

((EMl(x, t ) -  M2(x, 032))  

= (27~)2 -~ dk _ dk' kk-- 7 

x (( {~,(k, O) - e'*X~l(k, t) - P2(k, O) + e '~2(k ,  t) } 

x {~,(k', O) - e'k'~,(k ', t) --/~2(k', O) + #~'~P2(k', t)} )) 

l f ~ d k l  -z~ _= ~-i ((~l(k, t ) / ~ t ( -k ,  t ) - ~ ( k ,  t ) /~2( -k  , t))) 

1 { l_H(kt2/3)}  

= d~ {1 - H ( ~ ) }  (10) 
TC - -  ~z t 2/3 

Here I used the identity /~l(k, 0)=/~2(k, 0) and introduced H(k , t )=  
( l ( ~ ( k ,  t))12 )/S. Further I used that for large t, H(k, t) satisfies the same 
scaling behavior as the function G introduced in (3), as follows from a 
scaling analysis similar to the one performed in ref. 5. 

The final result in (10) is independent of x! It confirms the finding of 
ref. 3 that for fixed initial configuration the fluctuation in the displacement 
of a tagged particle scaled by t 1/2 goes to zero for t ~ oe. Comparing (10) 
and (6), one sees that both the fluctuations in the initial distribution and 
those caused by the dynamics give rise to fluctuations ~ t  ~/3 in the mass 
flow through an interface at rest with respect to the pattern velocity. The 
calculation of the magnitude of these fluctuations is not simple and seems 
to require the summation of infinite graph expansions. 

3. M O T I O N  OF S H O C K  F R O N T S  

A shock front is a sharply defined area between two homogeneous 
phases of different densities Pl and P2. The relative location of these two 
phases must be such that the mass flow toward the shock is larger than the 
mass flow away from it. For  example, for the simple exclusion process with 
p >  1/2 this means that the less dense phase has to be to the left of  the 
denser phase. As a result of mass conservation the shock moves at an 
average speed 

V s h  - -  
P2--Pl \ dp ]p=pl+~(p2 pl) 
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with 0 < ~ < 1. Hence vsh is in between the pattern velocities of Pl and P2; 
seen from the density pattern in 1 it moves to the left at an average speed 
Vsh--W, and seen from the density pattern in 2 it moves to the right at 
average speed V~h -- W2. Seen from the shock itself the front eats up both the 
density patterns coming toward it from the left and the right, and it will do 
it in such a way that the mass flows through interfaces somewhat to the left 
and to the right of it will be equal. So the following conclusions can be 
drawn: if one averages both stochastic dynamics and initial configurations, 
one finds excess mass currents fluctuating ~ t m, hence the position of the 
shock front will also fluctuate as ?/2 around its average value; if one fixes 
the initial configuration, the fluctuations on the mass flows, and hence in 
the position of the shock, will be ~ t 1/3. These predictions are in full agree- 
ment with the results of Giirtner and Presutti. (3) 

4. FLUCTUATIONS IN THE EVOLUTION OF DENSITY 
PATTERNS 

From (3) and the property 

~ x  2 G ( x )  = 1 - ~ + (;(x 4) 

for x tending to zero, we may derive that the mean square displacement of 
the center of mass with respect to its average drift is given by (s) 

( ( [X ( t ) -X (O)]2 ) )  = _ F l o g  G(kt 213) / '=~  = ~t4/3 (11) 

Similarly, one may obtain the average mean square displacement of the 
center of mass with respect to its average drift for fixed initial configuration 
by considering the difference in displacement between two independent 
stochastic evolutions starting from the same initial configuration. One finds 

1 
((IX(t) - (x( t ) )  ]2)F = ~ (([x,(t) - x2(t)3 2 F) 

1 ( D 2 t ) ) ) )  = ~ 
= - ~  ~SV log<<n,(k, t)n2(-k, 

= t 4/3 lim {1 - H(x)} /x  2 (12) 
x~o 

So again the effects of initial fluctuations and those of dynamica! fluctua- 
tions are of the same order in t. 

Next I want to address the question of how a density change imposed 
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at the initial time will evolve in time. In the simple exclusion process this 
will correspond to the time behavior of second class particles. 

Let the total density be pl(x, t)+pz(X, t)=p(x, t), where Pl is the 
unperturbed density and P2 the perturbation. Both p and Px satisfy (1). 
Hence by subtraction one obtains for P2 the equation 

6~P2 6~ 6~2p2 OJ2 
Ot r {P2(2p-p2)} +D r ~?x (13) 

with ]2 again Gaussian noise, satisfying 

(y~(x, t) y(x', r) ) 

=2Db(t--t'){(pz(X, t) p(x', t ) ) -  (p2(x, t))(p(x', t ) )}  (14a) 

(y~(x, t) y~(x', r) ) 

= 2Dr ( t - t ' ) { (p2 (x ,  t)p2(x', t ) ) -  (p2(x, t))(p2(x', t ))} (15b) 

These equations are to be combined with Eqs. (1) and (2) for p. If one 
averages over stochastic dynamlcs and initial distribution p(x, 0), keeping 
p2(x, 0) fixed, one readily finds that (@2(k, t))) satisfies the relation 

<(p2(L t))) = a ( k #  ~) ~2(k, 0) (15) 

which of source is no surprising result. As a consequence, the center of 
mass of an initially localized density disturbance with nonvanishing total 
mass will spread again ~ t  2/3. In particular, this means that the spatial 
distribution of a single second class particle inserted in a simple exclusion 
chain will spread according to the same power law. It is interesting to 
consider what happens to a localized initial disturbance of positive mass, 
corresponding to the ilasertion of a finite number of second class particles 
in a restricted region in the simple exclusion process. As an example, 
consider the case that N particles are distributed uniformly in the interval 
[ -1 ,  l]. According to (5) and (15), the average excess current through an 
interface at position x is given as 

((M(x, t)>> =~-~ dk [1 -G(kt2/3)] fi2(k, 0) (16) 

For the variance of this quantity one obtains 

((M2(x, t ) ) ) -  ((M(x, 0))  2 

- 1  (~ dk f ~ e i(k + k')x 
= (2~) 2 j ~  -~ dk' kk-----;~ {G(2)(kt2/3' k't2/3) 

-G(kt  2/3) G(k't2/3)} ~2(k, O) ~z(k', O) (17) 
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Here I introduced the pair Green function G ~2) through 

((pz(k, t) p2(k' ,  t ) ) )  = G(2)(kt 2/3, k ' t  2/3) pe(k,  O) p2(k' ,  0) (18) 

For large l one may distinguish two typical time regimes. For t ~ 13/2 the 
relevant values of k and k' are >>l 1 and one approximately has 
fi2(k, 0)~2(k', O ) = 2 r c c 3 ( k + k ' ) 2 l S 2 ,  where, for the simple exclusion pro- 
cess, $ 2 = c 2 ( 1 - c 2 ) ,  with c 2 the average density of second class particles 
between - l and + l at t = 0. Here the results of Section 2 may be applied 
and one finds an excess mass flow growing as t 2/3 through an interface at 
rest and, averaging over the initial distribution, one that increases as t 1/2 
for an interface moving at a constant speed, as long as this interface 
remains within the interval [ - l ,  1]. On the other hand, for t>>l 3/2 the 
relevant k values are ,~1-1. Then ~2(k, 0) and/~2(k', 0) may be replaced by 
N and the variance of M ( x ,  t) reduces to N times a constant function 
of (X/t2~3). This means that on this time scale the particles move like 
independent particles. 

If one inserts second class particles at a homogeneous density c 2 their 
behavior is similar to that of first class particles. The average speed of 
density patterns in Pl is w(c),  that of patterns in the total density is 
w(c + c2), and, by conservation of mass, the average drift velocity of second 
class particles equals { ( c + c2) v( c + c2) - cv( c ) } / c 2. In general all three will 
be different, so again a second class particle moves diffusively with respect 
to its average drift if one averages over both initial and dynamical fluctua- 
tions, whereas its displacement with respect to the average ckift increases as 
t 1/3 if one fixes the initial configuration. 

If one adds positive and negative second class mass with an average 
density zero, still the excess flow of second class mass through an interface 
will behave in the same ways as found for the first class mass flow in 
Section 2. However, if one now realizes this by inserting second class par- 
ticles and holes in the simple exclusion process, it becomes impossible to 
follow the motion of a tagged second class particle or hole, because of the 
possibility that these objects will annihilate each other. 

5. I N T U I T I V E  A R G U M E N T S  

At first sight it may look rather surprising that at the same time the 
position of the center of mass of a density disturbance spreads faster than 
diffusively and the position of a specific mass point (or second class 
particle) in this disturbance spreads slower than diffusively. However, the 
following argument may shed light on this: Consider a closed chain of 
length N on which initially mass is distributed according to the stationary 
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distribution. After a time t, according to the scaling properties of the 
stochastic Burgers equation, disturbances in the density distribution of 
coherence length ~ t  2/3 will have formed, so the total number of 
independent disturbances will be ~t-2 /3N.  The displacements of these 
disturbances with respect to their average drift will be randomly directed 
toward the left or the right, so, according to the law of large numbers, the 
excess number of disturbance regions displaced in either direction wil be 

t-1/3N1/2. Suppose the typical displacement of such a disturbance is of 
magnitude a(t); then the displacement of the center of mass will be propor- 
tional to t-1/3NmtZ/3a(t)/N, the factor t 2/3 coming from the total mass in 
a typical disturbance. Hence in order that this displacement is ~ t 2/3, a(t) 
has to be ~ t ~/3, implying that also the mass points within the disturbance 
are displaced in this way. The same type of argument, applied to simple 
exclusion systems satisfying an ordinary one-dimensional fluctuating 
diffusion equation, predicts a random displacement of mass fronts (which 
may be identified in this case with the positions of tagged particles) propor- 
tional to t 1/4, in agreement with the known behavior for such systemsfi '9) 

The notion of a correlation length growing as t 2/3 may be strengthened 
by looking at the difference in excess mass flows through different points x 
and y. From (15) one obtains for this 

1 
( ( [M(x,  t ) - M ( y ,  t)]2)) =~5n2 f dk 

1 - c o s k ( x - y )  
k 2 (( I#(k, t ) -#(k,  0)12 )) 

(19) 

which, by the usual scaling arguments, becomes a function of ( x -  y) / t  2/3 
increasing from 0 for x - y = 0 to an asymptotic value for (x - y) --* oc. 

The diffusive behavior of a first class particle on averaging over initial 
configurations is also easy to understand. During a time t such a particle 
samples a stretch of length ( v - w ) t  of the moving density pattern in the 
system. Dividing this stretch into segments of length 2 larger than the 
microscopic correlation length, one has that each segment adds a stochastic 
amount to the excess drift of the particle. Since the particle travels at a 
faster speed than the density disturbances in the system, these stochastic 
additions will be uncorrelated and, again according to the law of large 
numbers, the excess drift after a time t will increase as t 1/2. 

On the other hand, if one fixes the mass distribution for all times, the 
excess drift of the particle is completely determined and does not fluctuate. 
In reality, however, the mass distribution does fluctuate in time. For the 
simple exclusion process the excess drift of a first class particle is propor- 
tional to the excess mass it passes during its motion. We saw before 
that for fixed initial condition this excess mass contains a stochastic 
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contribution that grows as t 1/3. Additional contributions from diffusion 
around the average drift remain bounded in time, as can be seen readily 
from the arguments put forward in refs. 1 and 2. 

6. C O N C L U S I O N  

The spreading of mass patterns in systems described by a one-dimen- 
sional fluctuating Burgers equation inherently goes ~ t  2/3. As a conse- 
quence the random displacement of a mass front, which may be defined as 
an interface moving in such a way that at no time is there an excess mass 
current running through it, is proportional to t ~/3. Due to fluctuations in 
the initial configuration the random displacement from its average position 
of an actual mass point, which moves at a different average speed than the 
mass front defined above, increases as t 1/2. However, if one fixes the initial 
configuration, that increase is reduced to one ~ t  1/3. Similar conclusions 
were drawn for shock fronts as well as for second class particles in the 
simple exclusion model at a uniform nonzero average density. Disturbances 
consisting of a finite number of second class particles after some time show 
quasi-independent motion for all of these particles. 

Quantitative results, such as the amplitudes of variances and the form 
of Green functions, are not very simple to obtain. Using graph techniques 
for solving the fluctuating Burgers equation, one may obtain increasingly 
better successive approximations that could be solved numerically. 
Rigorous proofs for the various scaling relations derived in this paper 
might be even harder to obtain. 
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