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It is conjectured that the large values at intermediate times of the stress tensor autocorrelation function, found in com- 
puter simulaticrns, may be caused by a coupling of the stress tensor to pairs of slowly decaying extended heat modes of 
large wave number. Approximate expressions, amenable to numerical verification, are given for both the stress tensor and 
the velocity autocorrelation function. 

Some time ago Erpenbeck and Wood [ 1 ] found in molecular dynamics calculations that for dense hard sphere 
systems the stress tensor autocorrelation function, occurring in the Green-Kubo formula for the shear viscosity, 
exhibits a slow decay of relatively large ampfitude in the time regime between about 10 and 35 mean free times, 
which cannot be explained by standard mode-coupling theories [2]. These results were confirmed by Evans [3], 
who studied the frequency dependent viscosity r/(~) in non-equilibrium molecular dynamics simulations and 
found a behavior that could be fitted as r/(w) = 7(0) + a~o 1/2, again with a coefficient c~ much larger than could 
be explained by mode-coupling theory. Furthermore, Erpenbeck and Wood [ 1 ] also found that in the same den- 
sity and time regime where the viscosity time correlation function exhibits the behavior mentioned above, the 
velocity autocorrelation function for a tagged hard sphere attains rather large negative values before returning to 
the (positive) long-time behaviour predicted by mode coupling theories. 

In this paper I want to point out a possible cause for these phenomena and present .some explicit formulae, the 
evaluation of which would provide a check on the validity of my conjecture. 

De Schepper and Cohen [4,5] found in a study of the eigenfunctions and eigenvalues of the linearized Revised 
Enskog Equation that the hydrodynamic modes can be extended to extremely short wavelengths, that is wave- 
lengths shorter than the hard sphere diameter. Even more remarkably, they found that at large densities one of 
the eigenvalues, namely that of the extended heat mode, exhibits a pronounced maximum close to zero (but nega- 
tive) for a wave length, close to the hard sphere diameter, where the static structure factor is near a pronounced 
maximum. For example at the density of 0.625 times the close packing density, studied by Erpenbeck and Wood 
[ 1 ], the relaxation time of a heat mode at this maximum is about 20 mean free times. By comparing their predic- 
tions for the amplitude of the long time tails of the velocity autocorrelation function for two-dimensional hard 
disk systems to the results of computer simulations, Dorfman and Cohen could conclude, that within the time 
regime up till ~ 50 mean free times the hydrodynamic modes of the Enskog equation are a very good approxima- 
tion to the exact hydrodynamic modes of hard sphere systems. De Schepper, Cohen and Zuilhof [5] provided 
strong evidence that this remains true for the extended hydrodynamic modes. Therefore it is natural to extend 
the standard mode coupling equations so as to include couplings to products of the extended modes. In partic- 
ular products of heat modes with decay rates close to the minimal one may be expected to yield important con- 
tributions. In this vein De Schepper and Cohen studied the velocity autocorrelation function of a tagged particle 
[7] ~ They could show that the coupling of the tagged particle velocity to products of a diffusive mode for the 
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tagged particle motion (which is also slowly decaying at large densities) and a heat mode of opposite wave num- 
ber for the fluid motion, yields the velocity autocorrelation function negative for intermediate times. They did 
have problems, however, reproducing quantitatively the molecular dynamics results of Erpenbeck and Wood. 

It is my conjecture that in the case of the stress tensor autocorrelation function it is the coupling to pairs of 
heat modes with opposite wave number that is producing large contributions for intermediate times. The main 
cause for the large amplitude resulting from these contributions is the relatively large volume in wave number 
space from which contributing mode pairs can be chosen, namely a spherical shell of a width proportional to 
t -1/2, where t is the time argument of the correlation function, about kG, the wave number for which the decay 
rate is minimal..In contrast the mode pairs contributing to the standard t -3/2 long time tails have wave numbers 
lying within a sphere of radius proportional to t -1/2 around the origin. 

Let us consider the correlation functions occurring in the Green-Kubo formula for the shear viscosity in some 
more detail. Following ref. [ 1 ] I write the Green-Kubo formula for the shear viscosity as the sum of three con- 
tributions 

r/= t/kk + 277 k~ + ~ ,  (1) 

with 

t 

~AB= lim ~AB(t) ,  pAB( t )=  lim v - l ~ A ( 0 ) J f f ( t ) ) ,  (2a-c)  
t ~  0 V ~  

where ~ = 1/k B T, k B is the Boltzmann constant and T is the temperature, the angular brackets denote an equilib- 
rium average, V is the volume and lim v--,*~ denotes the thermodynamic limit. For a periodic system of N iden- 
tical particles of  mass m, interacting through pair potentials ¢(r i - ri), the kinetic current j k  and the potential 

n 
current J'~ are generally given as tensorial components of  the corresponding parts of the microscopic stress tensor, t/ 

j k  = T k J ~  = T a' T k = m DUiUi,  T ~ = 1 D n xy'  n xy'  i - 2 i s / r i j  a¢(ri/)/Orij'  (3a-d)  

with rij = r i - ri and r i and I)j denote the position and velocity of particle i. For hard spheres, due to the singular 
nature of the interparticle potential, (3d) is not well defined. Instead the potential part of the stress tensor is given 
as 

T ~' = m ~:1 ri /( t-r)A°i(t-r)a(t  -- t'r)' (4) 

where t l ,  t2, ... denote the times at which binary collisions occur, i and j depend on 7 and select the pair of spheres 
colliding at tT, rij(t~) is the vector connecting their centers and Aoi(t,r) is the change in velocity of particle i in 
this collision. 

My starting point for calculating the time correlation f u n c t i o n s  pAB in the time regime of interest is a linear- 
n 

ized ring kinetic equation that under certain approximations can be obtained by the methods of [8]. Setting for 
the one-particle distribution function f ( x ,  t) = n~o(o)~k(x, t), where x = (r, ~), n equals the equilibrium density and 
~o(v) is the maxwellian velocity distribution 

~o(o) = (13m/2rr) 3/2 exp ( - }  ~mo2), (5) 

the ring kinetic equation, in absence of an external potential, takes the form 
t 

(a /a t  + u 1 • a / O r l ) ~ ( X l , t  ) = A E ( X l ) ~ ( X l , t  ) + f d'c R (X l ,OqJ (x  1, t - "c). (6) 
o 

192 



Volume 105A, number 4,5 PHYSICS LETTERS 15 October 1984 

The linearized Enskog operator A E is defined as 

AE(Xl)=nfdx2 ~°(02)7"12 (g(°)(1 + 912)+nfdx3~°(v3)H(rl'r2lr3)_~13) ' (7) 

where 9 #  is a permutation operator, exchanging the arguments x i and x / i n  its operand;g(o),  with o the hard 
sphere diameter, is the equilibrium pair correlation function for two spheres in contact and H(r 1, r 2 Ir3) is a three 
point position correlation function, given as the functional derivative [9] 

H(rl, r 2 Ir3) = 8g(rl, r2)/fn(r3), (8) 

where g(rl, r2) is the pair correlation function, defined for general, non-uniform equilibrium states and (8) is 
evaluated for states of uniform density. Further the binary collision operator T12 is given as 

T12 = Iv12.f1218(r12 - o)[0(I) 12" r~12)b/x2 - 0 ( -o12" i12) ] ,  (9) 

with v 12 = t)l - I)2 and i12 = r12/Ir121. O(x) is the Heaviside step function and b(~ is an operator changing I)1 and 
! t 

o 2 in its operand to o 1 ando  2, defined as 
t ¢ 

t) 1 = I) 1 - -  ( t ) 1 2 " ~ ) ~  , I) 2 = t )  2 + ( t ) 1 2 " ~ ) ~ .  ( 1 0 )  

The ring operator R(Xl, 7.) is defined as 

R(x1.7") = n  f dx 2 ~P(o2)T12 (g(o) + nf dx 3  (v3)H(r , , r 2 I, 3) ( 913  + 9 23) 

+ ~n2fdx  3 f a x  4 ~,o(o3)99(o4)H(ri,r21r3,r4)gi3924 ) 
X SE(Xl.7.)SE(X2.7.)(g(o)+n fdx, 9(V5) (~15 + 9 2 5 ) . ( r l .  r21r5) 

½ n 2 fdx 5 dx 6 ~P(v5),(v6)gi  5 ~26H(r l  , r 2 ]r 5 . r6) ) T12(1 + 912 ). (11) + 

Here H(rl. r 2 It3. r4) is a four point correlation function, defined as 

H(rl, r 2 It3, r4) = 82g(rl, r2)/fn(r3)fn(r4). (12) 

The binary collision operator T12 is defined similarly to T12 as 

T12 = Iv12"r1218(r12 - o)0(I)12"r12) (bfl 2 - 1), (13) 

and the Enskog propagator is defined as 

SE(Xl,t)= exp[AE(Xl)t] (1 + n f dx 2 ¢(v2)h(rl,r2)gl2), (14) 

with h(rl, r2) = g( r l ,  r2) - I. 
The correlation functions at intermediate times that are of interest to us, are obtained by applying (6) to an 

initial distribution function of  the form ff(Xl) = (o I • i)  exp ( i k . r l ) ,  with i a fixed unit vector satisfying (I "k) 
= 0, and considering the limit k ~ 0. In doing so one has to make some approximations; the most important ones 
are based on the facts that (i) the short time behavior is dominated by the Enskog operator, and (ii) the inter- 
mediate time behavior is governed by terms containing just one ring operator. Then the following expressions for 
the correlation functions in the time range of  interest can be extracted: 

pAB(t) - 1 f ~ ~ ~#'exp{[za(q)+z#(q)]t}vA~(q)VBt~(--q), (15) 
2/32(21r) 3 

with vertex functions Vaa defined as 
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vk#(q)=no 2 fdo l fdv 2 ~(Ol)~(02) f d~O(o12.;,)(,,12"~)(b~, -1) 

X {(1 + 912) [--AE(X l)] -1/3m(ol ./~) (1~1 . i)} {[exp ( iq-~a)g(o)  + exp (-~ iq,io)H(q,(T)] 

x {e(1)[1 -e(e)l + [1 -e(1)le(2)) + exp(iq.do)g(o)[1 - P ( 1 ) ]  [1 - P ( 2 ) ]  }~I,a(-q,ol),I,#(q,o2), (16a) 

v~#(q) = f d o l f  dO 2 ~O(Ol)~O(u2)(-(l¢'4)(i.4)q ~ + n e 3 / 3 m  f d~O(o12"~)(o12"~) 2 (/~-li) ( i . ~ )  

X [exp(iq.6o)g(o)+exp(~iq.da)H(q,6)] ( P ( 1 ) [ 1 - P ( 2 ) ]  + [ 1 - e ( 1 ) ] e ( 2 ) )  

+ exp ( i q , i o ) g ( a ) [  1 - P(1)] [1 - P (2 ) ] )  ~I,a(-q,vl)q,~(q,v2) + ~ 7rno3g(a) vk~(q). (16b) 

In these equations % is a unit vector and f d6 runs over the unit sphere. The inverse Enskog operator acts within 
the space of  functions orthogonal to its zero eigenfunctions under the scalar product 

f (17) (*IX) 

The function H(q,~ ) is defined as 

It(q,~,) = f dr exp(iq.r)H(-~6o, ~ %air), (18) 

and C(q) is the Fourier transform of  the direct correlation function, satisfying nC(q) -- - I  IS(q) with S(q) the stat- 
ic structure factor, 

S(q) = f dr exp (iq.r)[6(r) + nh(r)] .  (19) 

The operator P(/)  is defined as 

e(0 =fdo; v(oi) (20) 

It projects functions of  oi upon the unit function. The sums over a and/3 run over the eigenvalues zc,(q ) of the 
operator - i q "  o + AE(q,~), with AE(q,v ) the spatial Fourier transform of  AE(X ). The corresponding right and left 
eigenfunctions of  this operator are ~I'~(q,u) and cba(q,o ) respectively, chosen so as to satisfy the relations [4] 

• (q ,v1 )=  {1 + [S(q) - 1]P(1)}d~*(q,ol), (~  ( q , t ) l ) ~ ( q , o l ) )  = 1. (21a,b) 

By the expansion of  the Enskog propagators within the ring operator in terms of  eigenfunctions, the contributions 
of  pairs of  slowly decaying heat modes are exposed explicitly. Preliminary calculations [10] of  (15) indicate a p'~'~ 
in the same order of  magnitude as found in the computer  simulations of  Erpenbeck and Wood [ 1 ].  However thes% 
calculations are very delicate, for instance the heat mode for q near qG, where the decay rate is minimal, is close 
to the unit function [4],  hence the first term on the right-hand side of  (16b) might be expected to be dominant, 
but its coefficient q dC]dq becomes zero at a value of q very close to qG. Furthermore, assuming ok k to be insig- 
nificant compared to 05 k, as seems to be indicated by the results of  ref. [1], one sees from (15) an~t (16) that 
~e~ . • " • s 3 ~k . . . .  0 n contains a contribution ~ ~ rma g(o) p_ , which according to ref. [ 1 ] at a density of  0.625 ttmes the close 

packing density would amount tO approximately -0 .3  Pn . Hence we must conclude that for a reliable calcula- 
tion of  the viscosity time correlation functions pAB a precise knowledge of  the heat mode eigenfunction and eigen- r/ 
value are required, as well as a fairly good knowledge of the function H(q, 6). 

By completely similar calculations one may obtain an expression for the intermediate time behavior of  the 
tagged particle velocity autocorrelation function, of  the form 
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PD(t) = %(O).Ol(t)>~n(~)~fdq ~ ~expt~ ([zS(q)+z'(q)]t}[t~D#(q)[2'  

with 

(22) 

vD#(q)=no2 f d l )  1 f d o  2 ¢(Vl)~(v2)fd60(v12"~)(o12"6)(b~-1)[-A~(Xl)] - 1  

× u 1 (exp (iq- ~o)g(o) + exp (-~ iq. ~o)H(q, ~)P(2)} q~sa(-q, u 1 ) qst3(q' t~2)" (23) 

Here, A~ is the Lorentz-Enskog operator defined as 

A[ = ng(o) f ~ 2 ~0(O2) T12, (24) 

and z s runs over the eigenvalues of  the operator - i k .  o + A~. The corresponding right and left eigenfunctions, 
q~s a~d ~ s  respectively, satisfy the relations [41 ~S(q,  o) = qzS*(q, o) and (~S(q,  u ) l ,S (q ,  o)) = 1. 

The calculations of  De Schepper and Cohen [7] were based on an expression for vOt3(q ) in (22) different from L 
that given by (23). The disagreement between theory and simulation results found by these authors might well be 
due to this difference. Prelinainary calculations [10] of  (22), using (23) for vDt3, indicate, a fair agreement with 
simulation results, but a more precise knowledge of  eigenfunctions and eigenvalues is needed again for a definite 
judgement of  the merits of  these equations. 

A detailed derivation of  the results presented here will appear elsewhere. 

I thank Dr. I.M. de Schepper for valuable comments.  The work reported here has been supported in part by 
NATO-grant 0419/82. 
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