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Long-Range Spatial Correlations in 
a Simple Diffusion Model 
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A simple anisotropic diffusion model, according to semiphenomenological 
arguments, exhibits long-ranged spatial correlations in uniform stationary 
states. 
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Spatial correlations in stationary nonequilibrium states of hydrodynamic 
systems are known to be long-ranged. (1~ Their magnitudes typically are 
proportional to powers of gradients of the hydrodynamic fields. 
Experimentally this was confirmed by Law et al. (2) Recently it has been 
found that spatial correlations may also be long-ranged (3) in uniform 
stationary nonequilibrium states, for example, in diffusive systems with 
periodic boundary conditions, driven by a constant external field. It has 
been speculated that in fact long-range correlations ought to be generic in 
such systems, and in case they are absent, this will in general be due to 
some symmetry properties, such as detailed balance. 2 

A relatively simple class of systems on which to study these properties 
includes interacting particle systems with anisotropic hopping dynamics. 
Phenomenologically these systems are expected to be describable by a 
fluctuating diffusion equation of the form 

~3n(r, t ) /~t  = D: VVn(r, t) - V "  J(r, t) (1) 

1 Institute for Theoretical Physics, Princetonplein 5, P.O. Box 80006, 3508 TA Utrecht, The 
Netherlands. 

2 An example where detailed balance is absent but nonetheless spatial correlations are short- 
ranged is the asymmetric simple exclusion model. Here the simplifying feature is that for 
each transition by which one may lose a certain configuration at some given rate, one can 
point out in a one-to-one fashion a transition occurring at the same rate by which one may 
gain that same configuration. 
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Here n(r, t) is the position- and time-dependent density, D is the diffusion 
matrix, and J(r, t) is a fluctuating current density, assumed to be dis- 
tributed as a Gaussian with variance 

(J(r ,  t) J(r', t ' ) )  = 2L6(r - r') 6(t - t') (2) 

where k is the matrix of Onsager coefficients. Nonlinearities, resulting, 
e.g., from a density dependence of D, are excluded from these equations. 
Assuming their validity, one may easily show (3) that stationary equal-time 
density correlations are short-ranged in space if and only if the matrices [3 
and L are proportional. Otherwise the density correlations are long-ranged 
and of quadrupolar structure. 

Here I want to present a simple model for which this requirement of 
proportionality between the matrices D and I_ can be shown not to be 
fulfilled in general, and hence the occurrence of long-ranged density 
correlations should be expected. 

The system is a hopping model on a square lattice with periodic 
boundary conditions behaving as a simple random walk model in the 
x direction and as a zero-range model in the y direction. Each site may be 
occupied by an arbitrary number of particles, the jump rate from a site 
occupied by n particles to a neighboring site in the + or - x  direction is 
nFh, and the jump rate from a site occupied by n > 0 particles to a 
neighboring site in the + or - y  direction equals Fv. 

If at times ti jumps in directions 0i occur, the total particle current is 
given by 

a(t) = a  ~ O~6(t- ti) (3) 
i 

where a is the lattice constant. From (3) it is seen that J(t) is a random 
current, with zero average, as jumps in the +0~ directions are equally 
probable. Moreover, ( J ( t ) J ( t ' ) ) ,  where the average goes over all 
realizations of the jumping process, is 6-correlated in time. Specifically, one 
obtains 

1 
~ ( J ( t ) J ( t ' ) ) = a Z 6 ( t - t ' ) { 2 c F h 2 2 + 2 ( 1 - p o ) F v ~ f i }  (4) 

Here N is the total number of lattice sites, c is the average occupation of 
a lattice site, and P0 is the probability for any given lattice site to be unoc- 
cupied. Further, 2 and fi are the unit vectors in the x and y directions, 
respectively. This result can be obtained even though we do not know the 
stationary distribution explicitly. First of all, due to the equality of the 
jump rates for jumps to left and right, respectively, to above and below, 
irrespective of the configuration of particles, no contributions to 
( J ( t ) J ( t ' ) )  will result from different jumps at t and t'. Hence, only the 
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autocorrelation of a jump at t to itself remains. This explains the 6-function 
on the right-hand side of (4). Furthermore, the average jump rate per site 
for jumps in the + or - x  direction equals 2cFh, irrespective of configura- 
tion, and that for jumps in the + or - y  direction equals 2 ( 1 - p 0 ) F ~ ,  
where P0 is the only property needed of the stationary distribution. 

Equation (2) implies that the Onsager coefficients are given as 

Lxx = a2cFh; Lyy = a 2 ( 1  - P0) Fv (5) 

whereas Lxy = Lyx = O. 
On the other hand, the diffusion matrix is defined by the relation 

j = O. Vc (6) 

where j is the stationary current per unit cell for a nonuniform stationary 
state in the limit of Vc approaching zero. For reasons of symmetry, only 
Dxx and Dyy are nonvanishing. In fact both quantities can be expressed 
quite simply in terms of the quantities introduced already. For j~ one 
obtains 

a 
j ~ = ~  ~ ( j ( n , m ~ n +  l , m ) - j ( n +  l,m--*n,m)),u 

n , m  

a 
= ~  ~, rh{c(n, m)--c(n+ 1, m)} 

t l ,  m 

Oc 
= --a2Fh 0---s (7) 

where j(n, m--* n + 1, m) describes the contribution to the current due to 
jumps from the site (n, m) to (n + 1, m). Here ( . . - ) , u  denotes the average 
over the nonuniform stationary state, and c(n, m) is the average occupation 
number of site (n, m) in this state. Hence 

Dxx = a2F~ (8) 

Similarly, for Jy one finds 
a 

Jy=Ar ~ (J(n'm-->n'm+ l)--J(n,m+ l--*n,m)~nu 
n , m  

a 

= ~  ~ F~{1-po(n ,m) - l+po(n ,m+l ) }  
n , m  

~y (1 - P 0 )  l a 2 F ~  

= _a2F ~ d(1 - Po) c~c 
de Oy (9) 
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For the last equality one has to assume that in the limit Vc--, 0, (P0)nu 
approaches its value in the uniform stationary state with average occupa- 
tion c. If correlations were to be short-ranged, this certainly ought to be 
true, but probably it will also be true for most systems having long-ranged 
correlations. From (9) one finds 

Dyy = aZFv d(1 - Po) 
de (lo) 

According to the arguments given above, the absence of long-ranged 
correlations requires the equality 

Lxx = Lyy (11) 
D xx D yy 

Substituting (5), (8), and (10)into (11), one obtains the relation 

d ( 1 - p o )  l - p o  
de c 

(12) 

which has as solution 

1 -  po= Ac (13) 

with A an arbitrary constant. However, 1 -  P0 is bounded between 0 and 
1, so (12) cannot hold generally. In fact, one would expect P0 to behave 
intermediately between its behavior for independent particles (pure random 
walk), which is po--e  -c, and the pure zero-range model, yielding 
Po = 1/(1 + c). This would imply that (9) would hold only in the limit c ~ 0. 
Especially for large density the anisotropy, and as a consequence also the 
long-range character of the stationary correlation functions, would become 
very strong. 

Generalizations of the model discussed here to different lattices, higher 
dimensions, or different zero-range processes for different principal direc- 
tions are easy to envisage. The conjecture that correlations in general will 
be long-ranged for these models seems very plausible. 

It would be worthwhile trying to make the above reasoning com- 
pletely rigorous. This would require proving the relation 

lim 8 8Po 8c 
vc~o~yy ( l - p ~  8c 8y 

under the assumption that stationary spatial correlations are short-ranged 
and proving the validity of the statement made below (10). Besides 
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showing the validity of fluctuating hydrodynamics for the given model, this 
would require an estimate of the effect of nonlinearities in the full, non- 
linear diffusion equation. 

A C K N O W L E D G M  ENTS 

It is a pleasure to thank Joel Lebowitz for his hospitality at Rutgers 
University, where this paper was written. I acknowledge the support of Air 
Force grant 86-0010. 

REFERENCES 

1. H. N. W. Lekkerkerker and J. P. Boon, Phys. Rev. A 10:1355 (1974); T. R. Kirkpatrick, 
E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26:950, 972, 995 (1980); D. Ronis and 
I. Procaccia, Phys. Rev. A 26:1812 (1980). 

2. B. M. Law, R. W. Gammon, and J. V. Sengers, Phys. Rev. Lett. 60:1554 (1988); B. M. Law, 
P. N. Segr6, R. W. Gammon, and J. V. Sengers, Phys. Rev. A 41:816 (1990). 

3. P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn, Long range correlations for conser- 
vative dynamics, preprint. 

Communicated by .L L. Lebowitz. 


