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synopsis 
In a previous paper it was shown that a modified form of the Enskog equation, applied to mix- 

tures of hard spheres, should be considered as the correct extension of the usual Enskog equa- 
tion to the case of mixtures. The main argument was that the modified Enskog equation leads to 
linear transport coefficients which are in complete agreement with the laws of irreversible thermo- 
dynamics. The existing extensions of the Enskog equation to the case of mixtures, on the other 
hand, yield results which do not satisfy the Onsager reciprocity relations. In this paper the de- 
tailed derivation of these results is presented, i.e., the normal solution of the modified Enskog 
equation for mixtures is obtained, the Navier-Stokes equations are derived and the explicit ex- 
pressions for the linear transport coefficients which follow, are shown to satisfy the laws of 
irreversible thermodynamics. 

1. Introduction. In a recent paper’), referred to as I, we have proposed a modified 
Enskog equation for a dense gas of hard spheres. As has been discussed in the 
literature*) the existing extensions of the usual Enskog equation to the case of 
hard-sphere mixtures39 4* 5 ) do not reproduce the linear relations of irreversible 
thermodynamic@) between fluxes and conjugate driving forces in a correct way; 
e.g., the Onsager reciprocity relations are in general not satisfied. 

In this paper we shall show that the modified Enskog equation for an s-com- 
ponent mixture of hard spheres of diameter oi and mass m, (i = 1,2, . . . , s) leads 
directly to linear relations between fluxes and conjugate driving forces, which are 
in complete agreement with the laws of irreversible thermodynamics. In addition 
we shall explicitly evaluate the linear transport coefficients. To start with we shall 
review in section 1 some of the results which were obtained in I. We give the 
linearized form of the modified Enskog equation in its Fourier-transformed re- 
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presentation and repeat the definitions of the relevant quantities. In section 2 the 
linearized equation is solved to linear order in the Fourier variable k, i.e., to terms 
linear in the gradients, with the aid of the projection-operator formalism. Then 
by taking the long-time limit the so-called normal solution is obtained in which 
the single-particle distribution function (D.F.) depends on time through the hydro- 
dynamic variables only. 

In section 3 the Navier-Stokes equations are derived. First the time derivatives 
of the hydrodynamic variables are expressed in the usual way as divergences of 
corresponding fluxes. Next, using the results of section 2, we show that these fluxes 
are proportional to the conjugate driving forces, in accordance with the laws of 
irreversible thermodynamics. The proportionality coefficients are identified as 
linear transport coefficients, for which we obtain explicit expressions. From the 
properties of the Enskog collision operator we deduce that the matrix of transport 
coefficients is positive definite and symmetric, which implies that the Onsager 
reciprocity relations are satisfied. 

Now let us consider the modified Enskog equation. Since we are only interested 
in the linear transport coefficients we find it convenient to work with its linearized 
form, derived in I, which reads 

;h= -Lh, (1.1) 

where 

L = L(k) = K(k) + D(k) + A(k), 

with 

(Kh), = iR * vrhr, 

(1.2) 

(1.2a) 

(1.2b) 

x (h: _ hi + e-ik”hhJ* _ eikaaeuhj). (1.2c) 

The function hi is the Fourier transform of the relative deviation &’ (Fi - @) 
of the single-particle D.F., &, from its equilibrium value vi. This function is the 
Maxwell-Boltzmann D.F., 

(1.3) 

where n, is the partial density of species i in thermal equilibrium, T = (k&)-l is 
the equilibrium temperature and k, is Boltzmann’s constant. The D.F. h depends 
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on the time t, the Fourier variable k, the discrete variable i labelling the different 
species, and the continuous variable vi, denoting the velocity of a particle belonging 
to species i. We shall in general use the short-hand notations (h), = hi E h, (vi, k, t) 
and in a similar way (kh), etc. Furthermore h: 3 h, (87, k, t) and similarly for h:, 
where the velocities UT and uj* of the restituting collision are given in terms of the 
velocities Vi and vj of the direct collision 

Here utj = vi - u,, the reduced mass pij is defined by ,uff ’ = rn; ’ + my ‘. 
Occasionally we shall also use M,, = m, + mj. A caret on a symbol (e.g., a) 
denotes a unit vector. The integration over the solid angle da in (1.2~) is restricted 
to the hemisphere triJ * B > 0, which is indicated by a prime on the integral sign. 
We further have x Ij .= gi,(aij) where g,Jr) is the equilibrium radial D.F. for two 
particles belonging to species i and j and a’ij = + (cl + 0.J. Further, y*‘,,(k) is the 
Fourier transform of the Mayer function fij(rij) (which equals - 1 for rii < cij 
and vanishes elsewhere), given by 

x,(k) = jdvemik*’ L(r) = (4~&~)_L (ko,,), J;,(O) = --4x& (1.5) 

wherej;(x) = x-l cos x - x2 sin x is a spherical Bessel function. Similarly c,,(k) 
is the Fourier transform of the direct correlation function, defined by the Ornstein- 
Zernike relation 

‘%W = &W + C di, W &(k) 3 (l-6) 
I 

where G,,(k) is the Fourier transform of the pair correlation function G,,(r) 
= g,,(r) - 1. Once the distribution function is known, one can calculate average 
values 6y = &y (k, t) of the deviations from equilibrium of some microscopic 
function yr(vl) by means of the relation, 

0 = (w, 4, (1.7) 

where we have introduced the inner product 

(Y, 4 = F j dvt vr~rh. (1.8) 

In particular we shall frequently consider the set of microscopic functions {y,), 
referred to as summational invariants or hydrodynamic variables, i.e., 

Y. = ~Yl4%>YT~ (I= 1,2 ,..., s), (1.9a) 
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where 

Yli = 61i; VUV,, = mivi; YTi = +md - 38-l (1.9b) 

and their averages 

6% = (YI 3 h), e az4 = (vu, h), ib& a- = (VT, h). (1.10) 

Here 6nl is the Fourier transform of the deviation of the local partial density from 
its equilibrium value; 6~ the Fourier transform of the local mass velocity and ST 
the Fourier transform of the deviation of the local temperature from its equi- 
librium value. We further introduced the total mass density Q = x1 el = ‘& mfni 
and the total number density n = xt ni. 

In the sequel we shall also need the transposed of the operators (1.2), defined 
by the relation 

(Y, LE) = (6, LTY) 7 (1.11) 

where y and 5 are arbitrary functions of i and vi. Similar relations define KT, DT 
and AT. Their explicit forms can be obtained directly from (1.2) and read: 

(KTh)i = (Kh), = ik - vJzr, (1.12a) 

From (1.2c), (1.12~) and the relation 

(1.12c) 

(1.13) 

one can show that 

A=N+Ll, (1.14a) 

with 

(Ah), = -T xl,&(k) S da,V, ik * vi@,* (1.14b) 

In view of the small-k behaviour, to be studied in the next section, we consider 
the limiting value of A(k) for small k, i.e., 



THE MODIFIED ENSKOG EQUATION FOR MIXTURES 229 

where yi is an arbitrary function of i and aI. The operator n(O) is symmetric, i.e., 

AT(O) = A(O), (1.16) 

and non-negative, i.e., 

(Y, 40) 34 2 0. (1.17) 

The only functions for which the equality sign in (1.17) holds are the summational 
invariants (1.9), which satisfy the relations 

n(0) y0 = /l’(O) y. = 0. (1.18) 

2. Solution of the linearized Enskog equation. The usual method for solving the 
kinetic equation (1.1) is the Chapman-Enskog method. The basic idea of the 
method is that for long times the time dependence of the D.F. h, is completely 
determined by the local hydrodynamical variables, defined in (1. lo), i.e., the local 
partial densities 6n, (t), the local mass velocity 6u (t), and the local temperature 
ST(t). A more modern variant of the above procedure is the projection-operator 
method, introduced by Zwanzig’). This method employs the basic idea of the 
Chapman-Enskog procedure by introducing a projection operator S, which pro- 
jects microscopic functions of the variables (i, ~3 on the hydrodynamic subspace, 
spanned by the hydrodynamic variables {y.], defined in (1.9). The connection 
between the two methods has been discussed in the literature*). 

In the projection-operator method one determines equations of motion for the 
functions Ph and P,h, with 

h = Ph + P,h (P1 = 1 - P), (24 

by multiplying (1.1) by P and PL, respectively, yielding 

$ Ph = - PLPh - PLP,h, (2.2a) 

; P,h = -P,LP,h - P,LPh, (2.2b) 

where the last equation has the formal solution 

P,h (t) = e -tPALP1 P,h (0) - d dz e-*p~Lp~ PILPh (t - t). (2.3) 

This solution is to be inserted in (2.2a) to obtain a closed equation for Ph. This 
equation will yield the hydrodynamic equations, whereas (2.3) approaches for 
long times the normal solution of the Chapman-Enskog methodg). 
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The projection operator acting on an arbitrary microscopic function E is de- 
fined as 

(2.4) 

where the first sum runs over the set of functions (1.9) and the second sum runs 
over all s components in the mixture. We further used the inner products 

(Yl, Yl) = n1; (Yk $4 = $4,; (YTSYT) = ; g. 

Greek superscripts (LX, /l, . . . = x, y, z) refer to carteian components of vectors 
and tensors, and we use Einstein’s summation convention for repeated indices. 
Notice also that (y., yb) = 0 for a # b. 

From (2.4) and (1.10) we find 

(2.6) 

which is precisely the linearized single-particle D.F. in local equilibrium. 
One verifies directly that P satisfies the requirements Pz = P, and Pi = Pl. 

This property is equivalent with the usual requirements 

(Y,, Ph) = (Ye, 4 or (~a, P,h) = 0, (2.7) 

stating that the local-equilibrium D.F. determines at any time completely the local 
partial densities, the local mass velocity and the local temperature. 

We want to derive the hydrodynamic equations together with explicit expressions 
for the transport coefficients. In order to do so we have to evaluate the quantities 
in (2.2) and (2.3) to the required order in the Fourier variable k. The terms in (2.2a) 
linear in k determine the Euler equations; the quadratic terms the Navier-Stokes 
equations; the cubic terms the Burnett equations and so on. In this paper we 
restrict ourselves to the Navier-Stokes equations. A method for obtaining the 
linear Burnett equations is treated in ref. 10. 

We start this programme by evaluating the quantities PLP, P,LP, and PLP, 
or its transpose PILTP, appearing in (2.2) and (2.3). The quantity PLP can be 
evaluated in closed form in terms of spherical Bessel functions. This is done in an 
appendix. For our purpose it stices to have PLP to terms of U(k'), which are 
also given in the appendix. Here we simply quote the results to the relevant order 
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in k by giving the matrix elements (y., LYb) of PLP; 

i 

0 ikp-lnl 0 

(Ya,~ya) = ikb-l C n, A,, kZ/lml+ (I + 2kf) ik/?-lp . cm 

d ikj? ‘p k2/3- i2’ 

The first s rows and columns are labelled by yt (/ = 1,2, . . ., s); the next three 
rows and columns by ylu or y: (IX = x, y, z), and the last row and column by yT. 
Here 7 is the unit tensor andp the equilibrium pressure of t,he hard-sphere mixture, 
given by 

BP = n - t 3 ninjXljJlj(o)* (2.9) 

We further have 

A i j = 6*j - nj C*j(O) e (2.10) 

The quantities 7’ and A’ are some of the collisional transfer contributions to the 
viscosity and heat-conduction coefficient, respectively. Their values are given as 

(2.11a) 

(2.11b) 

Next we have to evaluate P,LP = LP - PLP and PILTP = LTP - PL*P to 
U(k), appearing in (2.2a), (2.2b) and (2.3). The quantities PLP and PLTP are 
already known from (2.8), since according to (1.11) 

(yo, L4b) = (Ybv LY,). (2.12) 

So we start by evaluating to O(k) the quantities LP and LTP, or their components 
Ly,, and LTy,,. This can be done directly by using (1.2), (1.12) and (1.14) and 
expanding all terms to linear order in k. Notice that C’,(k) andji,(k) contain only 
even powers of k, since Cl,(t) and&(r) depend only on the magnitude of the 
vector Y. The calculations are straightforward and similar to those in the appendix. 
The results to O(k) are 

(LYA = * * at Ait, (2.13a) 

(LTyl)r = ik * Vidilp (2.13b) 

(Lc”)r: = ik/l-l + ik * (I1ziViUi)s Ai + ik (+miUf - p-l) BI, (2.13~) 

(L’v,), = ikfi-l c A,, + ik l {mlvivi}s A, + ik (&UT - p-l) B,, (2.13d) 
1 

(2.13e) 
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wht {tas>, = tap - !&tyy indicates a traceless tensor, and 

Ai = 1 - 3 T %X&(O) (/%,l%)9 

Bi = 1 - ; W&(O) (PUl~l), 

Ei = 1 - s F MU.&(O) (&M*r), 

I;i = 1 - F ~JXUUO) O1~lmj) * 

Finally we evaluate P,LP and P,LTP, which read in component form 

pLL% = L% - c Yb @by L%) (Y)b, yb)-l 
b 

(2.14a) 

(2.14b) 

(2.14~) 

(2.14d) 

(2.15) 

and a similar expression for P,LTP. Their explicit forms can be written down 
immediately, with the aid of (2.13), (2.8), (2.121 and (2.5): 

(2.16a) 

(2.16b) 

(2.16~) 

(PALyT)i = (PLLTyT)i = ik * vi (+miO: - $I-‘) Ei 

+ ik * miuiB_’ F (4~ - de) (WG. (2.16d) 

For a complete k expansion of (2.2) and (2.3) it is also necessary to determine 
exp (- tPILPI) and Ph (t - z) in (2.3) to zeroth order in k. Since lim,,, L(k) 

= A(O), and since PIA (0) Pl = A(O), [ i.e., the summational invariants y’. are 
right and left eigenfunctions with zero eigenvalue, as can be seen from (1.18)] 
we can replace exp (- tP,LP,) by exp [ - tA (0)]. Furthermore, we expand 
Ph (t - z) = Ph (t) + t (d/c%) Ph (t) + a.. . The second term on the right can be 

neglected since it is of O(k). This follows from (2.2a), where PLP is at least of O(k). 

The operator exp (- tPILPI), or its long-wavelength limit, exp [ -t/l (0)] in 
(2.3), acts on functions which are orthogonal to the null eigenfunctions of A(0). 
Since the first nonvanishing eigenvalue o0 of A(0) is typically of order w,, M n~a% 
(a is a typical hard-sphere diameter of the order of a,,.; B is an average velocity; 
and x is of the order of xij) the first term in (2.3) vanishes for times t much longer 
than the mean free time E 00 1 ; and in the same long-wavelength limit we may 
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extend the upper limit on the time integral in (2.3) towards infinity, yielding for 
long times 

P,h (t) z -1dr e-‘” (‘) P,LPh (t) = -A-‘(O) P,LPh (t). (2.17) 

This equation, together with Ph, given in (2.6), is the so-called normal solution of 
the Enskog equation, which depends on time only through the time dependence 
of the local hydrodynamic variables Sn, (t), &I (t) and 6T (t). The right-hand side 
of (2.17) is actually the formal solution of the Chapman-Enskog equations, which 
determines those parts of the single-particle D.F. which are linear in k, i.e., linear 
in the gradients of the local partial densities, the local mass velocity and the local 
temperature. 

After completion of the k expansion and the explicit evaluation of all quantities 
to the relevant order ink, we can derive the Navier-Stokes equations, and obtain 
expressions for the fluxes of mass: momentum and energy. This will be done in 
the next section. 

3. Navier-Stokes equations. In this section we derive the Navier-Stokes equa- 
tions together with explicit expressions for the fluxes and the transport coeffi- 
cients. 

The hydrodynamic equations can be obtained in explicit form by taking the 
inner product of (2.2) with the hydrodynamic variables ya, yielding equations of 
the form 

(3.1) 

Since P,h has been expressed through (2.17) and (2.6) in terms of local hydro- 
dynamic variables, eq. (3.1) is a closed set of hydrodynamic equations. For the 
case a = 1 we obtain the equations C$ continuity, using (24, (l.lO), (2.5) and 
(2.16b), in the form 

a 
znl = -ik * n, &I - ik * jllml, (3.2) 

where we have identified the massflux jl of species 1 as 

(3.3) 

with 

Jjj = vi (b - de). (3.4) 
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For the total mass density SQ = x1 m, &z, we have from (3.2)-(3.4) 

For the case a = u we obtain the equation of motion, using (2.8), (l.lO), (2.5) and 
(2.16c), 

2 6u = -ik Sp - ik * B, 
@ at 

(3.6) 

where 8p is the linear deviation of the local pressure from its equilibrium value 
which is given by 

8p =/?-‘~njAjlBn, +,F. 
1. I nl 

(3.7) 

In order to prove the validity of (3.7) we use the identity, which has been derived 
in paper I 

Aj, = Sj, - n, cjt(0) = /?nl , (3.8) 

where ,uj is the chemical potential of species j. In taking the derivative we keep 
the temperature and all partial densities, except ni, constant. Insertion of (3.8) 
into (3.7) yields the Gibbs-Duhem relation 

8n, + $6T = 1 nj ~,uJ + s 6T, 
J 

where we have used that the deviation 6,u, is given by 

sPj=T (~)T,n,,,sn~ + (%).,ST 

(3.9 

(3.10) 

and that (PIT) - c nj (dp,/c?T),,, = (afiaT),* = s, where f is the free-energy 
density, s is the entropy density and the property p/T = (ap]aT),, , valid for a hard- 
sphere system, has been used. 

In (3.6) we have further identified the momentum Jrux or pressure tensor e 
(actually its longitudinal components Ai * n, which are the only relevant parts of B 
as far as the hydrodynamic equations are concerned) 

(3.. 10 
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with 

z = n + 1r, (3.12a) 

(3.12b) 

(3.12~) 

For the case a = T we find from (2.9, (l.lO), (2.5) and (2.16d) the rate of change 
of the local temperature, 

$nk,-$ST= -ik*p&-ik*j,+ik*FFj,, 
I 

(3.13) 

where the energy$ux has been identified as 

j, = (J,, P,h) - 2’ ik @T/T), (3.14) 

with 

The reason for identifying j, as the energy flux becomes clear if one considers the 
equation for the energy balance. Since for a hard-sphere system the deviation 6e 
of the local energy density from its equilibrium value is given by 

(3.16) 

the energy balance equation can be obtained directly from (3.2) and (3.13) in the 
standard form 

i8e = -ik*(+zk,T+p)Bs- ik*j,, (3.17) 

where +nk,T + p is the enthalpy density of the hard-sphere mixture. 
The next part of this section deals with the fluxes and corresponding transport 

coefficients. As can be seen from the definitions of the fluxes and the ,expression 
for P,h, derived in the previous section, the fluxes are proportional to the gradients 
of the partial densities, of the mass velocity, and of the temperature, which act as 
driving forces for these fluxes. The coefficients of proportionality are linear 
transport coefficients for which we are seeking explicit expressions. The theory of 
irreversible thermodynamics tells us that we have to choose the fluxes and thermo- 
dynamic driving forces in conjugate pairs, such that the irreversible entropy 
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production (Tjrr can be written in the form oirrT = xi j,X,, where the summation 
runs over all pairs of conjugate fluxes and forces. Here we make the same choice of 
fluxes j and conjugate driving forces X as in paper I. For reasons of convenience 
the Fourier transforms of the forces are given, 

(3.18b) 

a; X,, = -ik 6u. (3.18~) 

Here ik @,L& is the (Fourier transform of the) gradient of PI at constant temper- 
ature. The second expressions for j. and Xi are specific for hard spheres, all the other 
expressions apply equally well to more general systems. This choice for the con- 
jugate sets of fluxes and forces is particularly convenient for hard-sphere systems, 
since the rate equation for the temperature reduces to the simple form 

$nkB $ ST = -ik * Sup - ik * j,. (3.19) 

In order to introduce the forces X0, X, and X, in P,h, given by (2.17) we have to 
eliminate the gradients of the partial densities in favour of the diffusion forxes X, . 

In order to do so we write down the explicit form of P,h by collecting the results 
from (2.17), (2.6) (2.16), (3.4) (3.12) (3.15) and (3.18), yielding 

P,h= -A-l(O) -c&Jl*Xo , 

or (3.2Oa) 

P,h=/!W1(0)(J,,*X,,+~JL*X,+lZ:X,,), 
1 

(3.20b) 

where we introduced the microscopic heat flux 

Jo = Jg - c 3 GWh) Jl. 
1 

(3.21) 

As we have derived expressions for the fluxes and for the function P,h, we can 
directly calculate the flux j, and the mass fluxes j,, which follow from (3.18a), 
(3.14) (3.3) and (3.20) to be 

j0 = B(Jo,~-l@) Jds-G + B~(Jo,~-l(0) Jl)*X -A’&, (3.22a) 
1 

j, = B (Jr, ~-l(o) JoI * & + B F (Jt, -4-W) JI,) * -G, (3.22b) 
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where we have used that isotropic tensors of the form (J, II- ‘(0) Z) vanish, i.e., 
fluxes couple only to the driving forces of the same tensorial character. This 
property is known in irreversible thermodynamics as Curie’s lawll). Since the 
second-rank tensors in (3.22) are jsotropic, they are a multiple of the unit tensor 1, 
and (3.22) can be written as 

j0 = LX& + c LJJ,, jL = LX0 + C&&, (3.23) 
1 I* 

where the coefficients Loo3 Lol, Ll,, and LIIP are linear transport coefficients which 
can be expressed as a linear combination of standard transport coefficients, like 
the heat-conductivity coefficient, the Dufour coefficients, the thermodiffusion or 
Soret coefficients and the multicomponent diffusion coefficients. Our coefficients 
are given by the following expressions; 

Lo, = +p (Jl, A-‘(O) Ji) + I’, (3.24a) 

Lor = 38 ($9 A- ‘(0) Ji”), (3.24b) 

ho = 38 (JI”, d-‘(O) J3, (3.24c) 

Lw = &!3 (JI”, /l-l(O) 514). (3.24d) 

The microscopic fluxes are given explicitly in (3.4), (3.21) and (3.15). The con- 
stants Et and Ei appearing in (3.15) are listed in (2.14) and il’ is defined in (2.11b). 
In (3.24) the summation convention for repeated indices is used. Notice the Onsager 
symmetry relations 

LlV = Ll.1, (3.25a) 

Lo, = L,o, (3.25b) 

which are implied by the symmetry of the operator A(O), [see (1.16)]. In addition 
the matrix of transport coefficients Li, (i, j = 0, 1,2, . . . , s) is positive definite as 
follows from (1.17) and (1.18) since the microscopic fluxes Ji in (3.24) are ortho- 
gonal to the null eigenfunctions of n(O). 

Finally we consider the pressure tensor, which can be deduced from (3.1 l), 
(3.20) and (3.18~) 

R * cr = @ * (C, A-l(O) E) : x, + Tj’ (i * x, + 2x, - R). (3.26) 

Again we have used Curie’s law. From the isotropy of the fourth-rank tensor 
(PP, P(0)ZY’), hi h w c is symmetric in the labels (OL, & and in the labels (y, 6) 
[see (3.12)], follows that it contains only two independent constants, so that 

fi (z”‘, n-‘(O) zyd) = 7” (&, 6,, + 6,, a,, - @, dya) + 5” a,, Byd. (3.27) 



238 H. VAN BEIJEREN AND M.H. ERNST 

By making appropriate contractions in (3.27) one obtains 

11” = $/I VP, A-l(O) ZIP) 9 (3.28a) 

5” = ;18 (P, A-l(O) .P) = /j (r, /I- l(O) F), (3.28b) 

where Z7’@ and .P are defined in (3.12). Insertion of (3.27) in (3.26) yields 

where ~7 is the shear viscosity and 5 the bulk viscosity, given by 

rj =$+Y/‘; 5 = 5” + $7’. (3.30) 

The quantities q’, $’ and 5” are defined in (2.1 la) and (3.32). The fluxes 17 and J’, 
listed in (3.9), contain the constants A, and Bi defined in (2.14). Both viscosities 
are again positive, due to the positive-definiteness of the operator A(O). 

4. Conclusion. By linearizing the modified Enskog equation, defmed in paper I, 
we obtained the Navier-Stokes equations for a mixture of hard spheres, together 
with explicit expressions for the linear transport coefficients. The form of these 
equations turned out to be in complete agreement with the phenomenological laws 
of irreversible thermodynamics. The matrix of transport coefficient satisfies the 
Onsager reciprocity relations and is positive definite. Using this result we have 
shown in I that the existing extensions of the Enskog equation to the case of hard- 
sphere mixtures3*4,5) * g m eneral ‘do not satisfy the laws of irreversible thermo- 
dynamics; more specifically the Onsager relations are not satisfied. 

The results for the single component case can be read off directly from our 
results. For the bulk viscosity one finds directly from (3.30), (3.28), (3.11) and 
(2.1 la) that 

where ~5 is the symbol used by Chapman and Cowling. For the shear viscosity and 
heat-conduction coefficient one obtains 

1;7= 

A= 

1. (1 + &r~iKr3)2 ?j(O) + $5, 
x 

L 
-YZ = + (1 + +zJ&)” P + c,i3, 

T 

where C,, = 3kB/2m and q(O) and A(O) are the Boltzmann values (low-density limit) 
of 11 and A. 
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The results for the mixtures, however, cannot be related in such a simple way 
to their low-density limits. For the diffusion coefficient in a binary mixture one 
deduces directly from (3.24) that in$rst Enskog approximation 

where [. ..I, indicates the first Enskog approximation, and L$ the Boltzmann value 
of the diffusion coefficient. In ref. 2 a simple method is given for relating the 
Enskog result for mixtures to the Boltzmann result, which can be applied here too. 

The explicit expressions for the transport coefficients, derived in section 3, can 
be evaluated directly in successive Enskog approximations by using the standard 
method, given in ref. 3. 

For a more general discussion and comparison between our extension of 
Enskog’s theory to mixtures and the old versions we refer to paper I. 

APPENDIX 

The matrix (y., Lyb) can be calculated from (1.2), (1.8) and (1.9), where 
L = K + D + A. Trivial calculations give 

h,, Wd = 

i 

0 i&j?-‘n, 0 

ikflnl 0 ik/lw2n 

0 ik#?-2n 0 i 

64.1) 

and 

0 0 0 

(Y.5 &b) = -W-l 2 nlnl [&(k) - x&(k)1 0 0 . 
i 

0 0 0 ! 

The meaning of row and column labels is given below (2.8). In order to obtain 
(v., liy,) we employ (1.14). First observe that d’x, = 0, as can be seen from 
(1.12c) ; consequently 

(Y.,~%) = (Yl,4%) = 0. (A.3) 

Sjmilarly one finds from (A.3$, (1.14) and dyT = ATyT = 0 

(A.4a) 

(A.4b) 

(A.4c) 



240 H. VAN BEIJEREN AND M.H. ERNST 

The matrix elements (A.4c)-(A.4e) remain to be calculated. Consider first (A.4e). 
By virtue of (1.12~) we can write 

(YT, AYJT) = -z xi/$ J da, da, plies s’ da (a~ * 2) 

X (e 
-ik.80,, 

- 1) e?w: - $j3-“) $mJ(u,*' - vf). 

We use the dynamics (1.4) and change to centre of mass and relative velocities, 

The jacobian of this transformation is 1, and we write q~q~~ = n,n,qcvl, with 

s = F=(G) = (PMi.,/2x)“’ exp (-3PM,,G’), 

91r = 9,(u) = 63~11/2~)~‘~ exp (--~~BP~.P~>~ 

where M,, = ml + m, andp;’ = rn;' + my'. Next, we carry out the integration 
over the centre of mass velocity Gij, yielding 

(A.9 

After changing the order of integrations, we can carry out the v integration, 

s dv (u - 8)3 cpr = (217~)~ @)- 3’2. 
0.8>0 

The b integration can be expressed in terms of spherical Bessel functions j,(e) 
(1 = 0, 1, 2, . . .), defined as 

j,(e) = sin ; .h(e) = y 
cos Q 

--3 W-5) 
e e 

i2@) = + - 1 sin Q 
( > 

3 

e 
- yCOS@, 

e 

which satisfy the recursion relation 

d 
l _jj, = - 

Q 21+ 1 
R&I - U+ l)iHll. (A.7) 
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By virtue of (A.6) we can write in (A.5) 

j ds (,-ik*50‘, 
- 1) = 4x b0 (ko,,) - 11. 

Collecting the above results then gives 

(VT, lly~) = B-‘k’1’ (k), 

where 

(A.8) 

(A-9) 

In a similar way we find for (A.4c) 

(VU, no.) = /!Plk* [q’(k) (1 - kd) + q”(k) E;i], 

where 

(A.lO) 

(A.lla) 

(Allb) 

In the derivation of (A.lO) we have used the following relation for an isotropic 
tensor field 

s da e-ipir’B i?S = a(e) (7 - kk) + b(e) dk, 

where the coefficients a and b can be determined by contraction, i.e., 

2a + b = j dS eSid’& = 4xjo (e), 

b = JdSe -i&.8 (E; . 32 = 
4~ liok4 - 2j2 (dl 

and where (A.7) has been used. The remaining matrix element (A.4d) is calculated 
again in a similar way and yields 

(A.12) 

Addition of the matrix elements in (A.l)-(A.5), (A.10) and (A.12) yields finally 

(%, J%*) (A.13) 

0 ik/?-‘n, 0 

= i&?-l C n, d,,(k) k*/?-’ [T’(k) (I- &k) + q”(k) I%] ikj3-lp (k) , 

0 ikp- ‘p (k) k2/!?- ll’ (k) 
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where 
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(A.14) 

The quantity p(k) reduces in the long-wavelength limit to the equilibrium pressure 
of a hard-sphere mixture. 

In the body of the paper the matrix (v., LyJ is only needed to terms of 0(k2). 
Therefore we make a k expansion of the matrix elements in (A. 11). Since the 
functions O,,(k), J,(k), q’(k), C’(k) and A’(k) contain only even powers of k, we 
find to the relevant order in k 

\ 0 ikb-‘p 

which is eq. (2.8). The symbols are defined in (2.9), 
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