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Some implications of a modified form of the non-linear Enskog equation for a hard sphere fluid are investigated. 
It leads to different Navier-Stokes equations in a multicomponent mixture, and its linearized form describes the 
space and time dependence fluctuations. 

Starting from the Liouville equation for the non- 
equilibrium N-particle distribution function, we have 
derived a modified form of the non-linear Enskog 
equation. At the initial time, t = 0, we have taken into 
account all hard sphere overlap exclusions, but all other 

position and velocity correlations are neglected. Our 
modified Enskog equation becomes exact, under these 
conditions, for times much shorter that the mean 
free time between collisions. It, therefore, describes 
on this time scale the single particle distribution func- 
tion fix, t) for arbitrary spatial variations. The deriva- 
tion will be given in a future publication. Here we will 
point out some interesting implications of this eqaution, 

which reads 

$fl +y l Vfi =Jb2 q2 X(y2)f,f2 > (1) 

where fi = ~Xi, t) and XI = (li,Ui) stands for the posi- 
tion and velocity oy particle i(i = 1,2); Tl 2 is the 
binary collision operator, and gr1r2) the local pair 
distribution function for r12 > the diameter of the 
spheres u. The definitions are 

T1 2 = a2jdB (ul 2 * ww,, --a)~,--S(~~2+~N (2) 

%rlr2) = 1 +Jdr3n(r3) 1/(1213) 

+~~&3dT4n(r3)n(r,)~(12134)+... (3) 

The prime on the integral indicates that u12 l 6 > 0, 
whereu12 =ul -u2, and 8= o/o is a unit vector. The 
operator R e transforms the precollisional velocities 
u1 and u2 into the postcollisional velocities UT anduz 
resp. eq. (3) has the form of the pair distribution 
function for a fluid in a non-uniform equilibrium state, 

where in our case the local density n(r, t) = J duflx, t). 
The Husimifunctions V(1213...) are the same as enter 
in the density expansion of the equilibrium pair distri- 

bution function [ 1 ] . In the usual Enskog equation [2] 
sr1r2) is replaced by the local pair distribution func- 
tion x(r12(n(R)), localized at the fixed point R = 
i(rl +r2). This means that all local densities n(ri) in 

eq. (3) are replaced by n(R). Intuitively xr1f2) in 
eq. (1) seems also appealing, since it takes into account 
the spatial correlations between two spheres in a non- 
uniform local equilibrium state, while in the usual 
Enskog equation non-uniformities are only taken into 
account to a certain extent. To see this we expand 
the local densities in eq. (3) around some fixed point 
R. By choosing R = $(r, +r2) the term linear in the 
gradient vanishes and we have 

2 
%5r2) = x(r121 n(R)) + W ) . (4) 

Hence, up to terms of 0(V2) eq. (1) is identical with 
the usual Enskog equation. If one would use eq. (1) 
for the calculation of transport coefficients and for 
the derivation of hydrodynamic equations (which is 
strictly speaking outside the time regime for which 
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eq. (I) has been derived) it gives the usual Enskog 
results at the Navier-Stokes level. However, our 
equation may also be used to derive Burnett and 
higher order hydrodynamic equations, while the 
usual Enskog equation can no longer be used [2]. For 

multicomponent mixtures, extensions of the Enskog 
collision term have been given [2,3] in which the 
local pair distribution function for two particles of 
different species in contact has been localized either 
at the point of contact, or at the mid point between 
the centres of the two colliding spheres. The two choices 
give different Navier-Stokes equations. Neither of 

these choices is consistent with eq. (1) in the case of 
mixtures for the following reason. If one expands the 
local pair distribution function for two particles 
belonging to different species around some point R, 
it is impossible to choose the point R in such a way 
that the terms linear in the gradients vanish for all 
values of the partial densities. 

Consequently extension of eq. (1) to multicompo- 
nent mixtures leads to an Enskog equation which 
differs already at first order in the gradients from the 
equations in refs. [2,3] and, therefore, yields different 
Navier-Stokes equations. In the way the theories are 
presented, the differences manifest themselves mainly 
in the form of the diffusion forces. For instance, the 
diffusion forces at uniform temperature in refs. [2,3] 
coincide only with the gradients of the chemical 

potentials to lowest and first order in the density, 
while in our case the diffusion forces are found directly, 

as the gradients of the chemical potentials to all orders 
in the density, as it should be according to irreversible 

thermodynamics. The diffusion coefficients however 

are identical in all cases. 
An other interesting consequence of eq. (1) is its 

linearized form. We have shown that linearization of 
eq. (1) around total equilibrium reduces to the follow- 
ing equation for the Fourier-transform, $(k,u, t), of 
the quantity r#~-l(u){j(x, t)-@(u)}, where N(v) is the 
Maxwell-Boltzmann distribution function multiplied 

by the equilibrium density n; and k the Fourier 
variable : 

(5) 

X {$(uf)+j;(ui)exp(-ik *a) 

- J(ul) - ?(u,) exp(ik *a)) . (6) 

Here X = doin); zk, ck, f?, are the Fourier-transforms 
resp. of [n(r, t)-n] , of the Ornstein-Zernike direct 
correlation function, and of the Mayer function 
fir) [f(r) = - 1 for r < u, and vanishes elsewhere] . The 
second term on the right-hand side of eq. (5) results 
from linearization of %flr2). Eq. (5) was recently 
derived by means of many body methods by Mazenko 
et al. [4] , and by Konijnendijk and Van Leeuwen [5], 
for a description of the short time behaviour of space 
and time dependent fluctuations in a hard sphere 

fluid. 
A detailed account of the calculations will be 

published elsewhere. 

We thank Professor E.G.D. Cohen for some helpful 
comments. 
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