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The diffusion coefficient and velocity autocorrelation function for a fluid of par- 
ticles interacting through a square-well or square-shoulder potential are 
calculated from a kinetic theory similar to the Davis-Rice-Sengers theory and 
the results are compared to those of computer simulations. At low densities the 
theory yields too tow estimates due to the neglect of correlations between sub- 
sequent partial collisions of identical pairs; in particular, the neglect of bound- 
state effects appears important. At intermediate densities the theory makes 
reasonable predictions and. at high densities it produces too high values, due to 
the neglect of ring terms and other correlated collision events. The results for the 
square-shoulder potential generally exhibit better agreement between theory and 
simulations than do those for the square-well potential. 

KEY WORDS: Square-well potential; diffusion coefficient; kinetic theory; 
velocity autocorretation function; computer simulations. 

1. W H Y  STUDY A SQUARE-WELL FLUID? 

Since the celebrated paper of Alder and Wainwright, (1) many investigations 
based on the method of molecular dynamics (MD) simulations have been 
done to study the transport properties of dense classical fluids. Most of 
them studied either systems of hard spheres or liquids consisting of par- 
ticles interacting through a Lennard-Jones (L J) potential. The hard-sphere 
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simulations can be compared to the predictions of Enskog's theory (z~ and 
more recent refinements (3~ of this, and up to fairly high densities good 
agreement has been found. (4) Due to the complications caused by the finite 
duration of collisions and the presence of many-body interactions, no com- 
parable theory is available for dense LJ systems, although good agreement 
is found between MD results for these and experimental results for noble 
gases. (5~ If one wants to extend kinetic theory from hard-sphere fluids to 
more realistic potentials, containing attractions between particles and 
allowing for a nontrivial temperature dependence of transport coefficients, 
the square-well potential is a most natural choice. Since also the interac- 
tions at the outer square-well edge are instantaneous, the problems referred 
to above are avoided. 

An extension of Enskog's theory to the square-well potential, largely 
based on intuitive ideas, was presented by Davis et al. (DRS), (6) but their 
theory is not entirely satisfactory, because conservation of energy is not 
obeyed. This problem is avoided in a recent derivation of a kinetic theory 
for the square-well fluid, (7) employing maximization of entropy as a formal 
tool. The resulting hydrodynamic equations and transport coefficients, for 
a simple fluid, up to the Navier-Stokes level are almost the same as those 
obtained from DRS theory; only the bulk viscosity is different. (~6~ Yet, 
already the fulfilment of all conservation laws renders this new theory more 
satisfactory. 

In this paper we consider the related kinetic equation describing 
tagged particle motion in a square-well fluid at equilibrium and compare 
its predictions for the coefficient of self-diffusion and for the velocity 
autocorrelation function to the results of the MD simulations. 

The organization of the paper is as follows: in Section 2 we introduce 
the kinetic equation for the square-well fluid and derive from it the 
equation describing tagged particle motion; in Section 3 we discuss the 
calculation of the self-diffusion coefficient; in Section4 we compare 
theoretical and MD values of this coefficient; in Section 5 we consider our 
theoretical predictions and MD simulation results for the velocity 
autocorrelation function and in Section 6 we discuss the results obtained. 

2. KINETIC E Q U A T I O N  FOR A DENSE S Q U A R E - W E L L  FLUID 

We consider identical particles of mass m with phases x i=  (ri, v~), 
where r~ is the position and v~ the velocity of particle i. They interact 
through a square-well potential ~o(ro), equal to m for r~j<o, to 
- e -  -mv~/4 for a<<.ru<R, and to 0 for r~j>~R, with r~= trail and r0= 
r~-  rj. The parameter e can also take negative values, in which case we refer 
to the square-shoulder potential. The time evolution of the one-particle 
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distribution function f~(x, t) and that of the local potential energy density 
u(r, t) are determined, respectively, by 

(~3 ~3 \ x ,  f dx 2 t) (2.1) 

~u(r i  t ) + l  0 I f ~t ' "2~ri" dr1 dx2YlO(rl2)f2(xl,x2, t ) 

t d,l f dx: lvl:.<:l y:Ixl x:, [)[0(u ~12-- I)l) - 2  

x 6(r~z-R )-O(-v12"8~2)g(r~2-R+)] (2.2) 

with the following definitions: 

fl(x, t)= ( ~  6(x-- xi) ) (2.3) 

I t  1 u(rl, 0 =  5 i~jq)(ro.)c~(ri--rl) (2.4) 

f2(x' x" t)= I ~ j 6 ( x -  xi) 5(x'-- (2.5) 

( ( . . . ) ) =  ~ fdxUp(x N,t)(...) (2.6) 
N = O '  

where p(x N, t) is the density in phase space. 
The time evolution equations can be closed by approximating p(x ~, t) 

with the ensemble pM(S v, t) that maximizes a certain entropy functional 
under the constraints that, at given t, both f~ and u are reproduced 
correctly by p~. Details of this procedure are given in ref. 7; for our 
discussion the main results are that the velocities of the particles are 
uncorrelated, and hence 

f2(xl, x2, t)=fl(x 1, t) fl(x2, t) g2(rl, r2, t) (2.7) 

and gz(rl, r2, t) is a known functional of number density and potential 
energy temperature at all positions in the fluid. 

The number density is determined as n(rl, t)=Sdvlf~(xl, t) and 
potential energy temperature is determined by the constrainr 7) that the 
ensemble maximizing entropy correctly describes the local internal energy 
density as given through f~(xl, t) and u(r~, t). 
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The binary collision operator can be defined (7) through the action of 
its adjoint operator T/J satisfying 

f d v ~ d v j f * T g g = ( f  dv idvjg*Ti j f )*  (2.8) 

for any pair f, g of square integrable functions of v~ and vj. Four different 
terms in T o = Z4= ~ Tb t) respectively describe collisions between particles i 
and j at the hard core ( /=  1), entering ( / = 2 )  or leaving ( /=  3) the well, 
and rebounding at the inner side of the square-well edge (l = 4). Explicitly, 

T ~ ) =  lira S ~  - Rl) [vij'rij [Ot(v i j ' fo)[b( l ) (~/ j )  - 1 I S  ~ (2.9) 
t ~ O +  

where 

R1 = ~, R2 =- R3 = R4 = R 

v u = v i - v  s, fo,=ro./[roL 

01(X ) ~--- 02(X ) = 0 ( - - X ) ,  03(X ) = O(x--  Vl) , 04(X ) = O(x) 0(1) l -  X) 

and O(x) denotes the unit step function. 
The collision operators b(t~(~) change the particle velocities according 

to the collision dynamics. The center-of-mass velocity (vi+vj)/2 is 
unchanged, while the action on the relative velocity is given by 

b(1)(e) vii = b(4)(~)v/j = v 0 - 2e(v/j �9 e) 

b~2~(~)=vo-~{[(v/j.~)2 +v~]l/2 +v,j.~} (2.10) 
b(3) (~)  = v/j + 0 {  [ (v / j  �9 ~)2  _ ~)2] 1/2 _ vii. 6 }  

The free streaming operators S o are inserted to produce unequivocal results 
when T(0 acts upon functions that are discontinuous at ris = Rt. U 

From (2.1), (2.7) a kinetic equation for tagged particle motion is 
obtained by assuming that one single particle, which can be distinguished 
from the others, has to be described by a nonequilibrium distribution 
function, whereas for the other particles, with which the tagged particle 
makes collisions, the equilibrium distribution is adequate at all times. This 
amounts to replacing f2(xl,  x2, t) in (2.7) by fl(Xl,  t) g/(40eq(1)2) gz(r12 ), with 
rpeq(v) the Maxwellian velocity distribution 

~0eq(v) -- (~m/Zrc) 3/2 exp( - flmv2/2) (2.1 1 ) 

where /3 = 1/kB T, T is the temperature, kB is Boltzmann's constant, and 
g2(r12) is the equilibrium pair correlation function at the given density n 
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and temperature T. The equation for f~(x~, t) thereby decouples from the 
energy equation (2.2) and assumes the form 

(~t+ vl" ~-~l) f1(xl, t)= I dx2 ~'12g2(r12) nq~q(v2) f l(xl, t) 

=-: Afl(x ~, t) (2.12) 

which defines the Lorentz-Boltzmann operator A. 

3. C A L C U L A T I O N  OF T H E  C O E F F I C I E N T  OF S E L F - D I F F U S I O N  

Self-diffusion is the macroscopic transport phenomenon that describes 
the motion of tagged molecules in a fluid of identical particles in thermal 
equilibrium in the limit of infinite dilution of the tagged particles. The dif- 
fusion equation describing this phenomenon on the macroscopic level can 
be derived (8'9) from the kinetic equation (2.12) by constructing for given q 
the so-called hydrodynamic eigenfunction or diffusive mode of the operator 
A - Vl" 0/0rl, i.e., 

~ ( X l )  = [exp(--iq" r l)]  gtD(q, Vl) (3.1) 

satisfying limq_o gtD(q, v l ) =  1. 
Treating - v l .  0/Or1 as a perturbation to A, one can expand both the 

eigenfunction gtD and the corresponding eigenvalue COD in powers of iq as 

~D(q, V1) = I/-/0D(vI) -~- iq~(~ ,  Vl) + (iq) 2 ~P~(~, Vl)+ ""  

co D = co D + iqco~ + (iq)2o D + --- (3.2) 

with fi =q/Iql. From standard perturbation theory one readily finds that 
COD = COp = 0 and 

1 
co D - D = --lim (qo~q[ v x ~ vx tq~7 q > (3.3) 

E~0 

with 

<q) IO> ~ ' f  dv [-q)~q(v)] --1 (~Or @(V) (3.4) 

The explicit evaluation of (3.3) is rather involved and can be done either by 
means of the Chapman-Enskog expansion or, equivalently, by expanding 
gt~(~0~q)-I in a series of Sonine polynomials and determining the coef- 
ficients from a variational principle. The details of this procedure are 
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described in the Appendix. The main result is that the coefficient of self- 
diffusion assumes a form containing only equilibrium pair correlation 
functions at the values r o = a and ro.= R as unknown quantities. In prin- 
ciple, these pair correlation functions could be determined from equilibrium 
statistical mechanics. We decided, however, to use "experimental" values, 
i.e., values obtained from MD simulations done by one of the authors 
(J.M.). The expression for D in lowest Enskog approximation is 

3 _,/2 i R,2 g2(R ) ~(&) (3.5) 
n 'D* = ~  7z g2(o.+ ) 1+  g2(a+ ) 

where ~ ( x ) = l - l x e  X[ l+eX/2Kl (X /2 ) ]  and K~ is a modified Bessel 
function ~l~ and the reduced units n*, D*, and R* are defined at the 
beginning of the next section. The results for g2(a+) are shown in Fig. 1. 
Extensive tables for both g2(a + ) and g2(R • are given in ref. 11. 

Corrections to (3.5) due to higher Enskog approximations are always 
small. The relative correction resulting from the second Enskog 
approximation is discussed in the Appendix and is shown in Fig. 2. It is 
seen to be largest in the absence of the square well, but even then it never 
exceeds a few percent. Still higher Enskog approximations yield even 
smaller corrections. Also notice that the inclusion of higher Enskog 
approximations always increases the value obtained for D as a consequence 
of general principles of variational calculus. ~9) 

o 

o 
o 

1 .o 

13~ ' " ' n o r  3 

Fig. 1. The pair correlation function at the hard-core diameter gz(a+) plotted as a function 
of n* and e*. 
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Fig. 2. The correction factor D(2)/D 01-  1, with D ('J the nth Enskog approximation to the 
diffusion coefficient, as a function of n* and e*. 

4. C O M P A R I S O N  BETWEEN THEORY A N D  M O L E C U L A R  
D Y N A M I C S  RESULTS 

The numerical results presented in this paper are expresed in natural 
reduced units, based on the hard-core diameter a as the unit of length and 
the unit of velocity (kB T/m) 1/2, which together determine the unit of time. 
This leads to the following reduced quantities: the outer-well diameter 
R*=Rcr 1, the well depth e*=e(kBT) l=/?e, the number density 
n * =  na 3, and the self-diffusion coefficient D * =  D(a2kB T/m) -1/2. 

For all figures presented here the outer well diameter is fixed at 
R * =  1.5. To eliminate trivial density dependences, it is useful to discuss 
n'D* instead of D*. The results of MD simulations for this quantity are 
plotted in Fig. 3 as a function of n* and e*. A part of these results has been 
discussed in a previous study, (12) but new simulations (e.g., for the square- 
shoulder potential) have also been performed. The additional runs have 
been performed with the same method and over a comparable number of 
collisions. Therefore, the reader is referred to ref. 12 for a detailed descrip- 
tion of the technique and for a discussion of its accuracy. Here we only 
mention that the most serious limitation of accuracy is due to the limited 
number of only 108 particles in the simulations. There are four important 
characteristics of Fig. 3 to be noted: 

822/53/5-6-10 
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Fig. 3. 
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Molecular dynamics results for n'D* as a function of n* and e*. 

1. At given density the maximum value of the functions is always 
reached at or very close to e = 0, that is, for hard-sphere conditions. The 
slope of D* as a function of e appears to jump at e = 0. This behavior is not 
counterintuitive: adding a square shoulder effectively increases the hard- 
sphere diameter, which will impede diffusion, and adding a square well also 
increases the total cross section. In addition it makes particles stick 
together, which in general will also make diffusion harder. A discontinuity 
in slope may be caused by the possibility of having bound states in the 
square-well region, which stops for e = 0. 

2. For square-shoulder values at constant density the slope decreases 
with increasing square-shoulder height. This behavior is easy to understand 
since, for le[ ~> kB T, the system saturates as a hard-sphere system of radius 
R:~o -. 

3. At constant temperature there is a nearly linear relationship 
between density and n'D* similar to the Batschinski-Hildebrandt law C13'14) 

for the relationship between reciprocal shear viscosity and density. (15) In 
view of the near validity of Stokes law for molecular particles at liquid 
densities, (16) this is not a surprising fact. Notice, however, that this type of 
relationship seems to hold for all values of e studied. 

4. In the regime of higher densities and low temperatures the values 
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of n'D* as a function of ~* at constant densities have a point of inflection; 
for very low temperatures they approach zero. 

In Fig. 4 the predictions of the kinetic theory for n'D* are plotted 
against e* and n*. Regarding the same four characteristics discussed above, 
the following features catch the eye. 

1. In contrast to the MD data at given density, the maximum is not 
always reached for hard-sphere values; at low densities the square-shoulder 
potential increases the diffusion constant compared to the hard-sphere 
values. We will comment on this later in this section. 

2. Again there is a decreasing slope of the function values for 
constant densities in the square-shoulder regime, at least for e*< ~-0 .5 .  

3. Only for hard spheres does an approximately linear relation exist 
between density and n'D*; for e C0 there are strong deviations from this 
type of density dependence. Even for hard spheres this linear law is by far 
not as good as from MD data. This result is not surprising, since the 
Batchinski-Hildebrand law probably is the result of extended mode- 
coupling effects, (17) which are left out completely in the kinetic theory 
considered here. 

d 

cS 

a3 
- 1 , 2  _ 

~s @~ 1. 2 

Fig. 4. Kinetic theory values for n 'D*  as a function of n* and e*. 
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4. There is a qualitative disagreement between theory and simula- 
tions in the regime of high densities and low temperatures. At constant 
density and variable temperature the diffusion coefficient is a concave 
function of ~* within the considered range of values. This difference could 
be due to the fact that the present kinetic theory does not consider the 
collective effects of clustering, except for their influence on the pair 
correlation function. 

Figure 5 shows the ratio between the theoretical and the simulated dif- 
fusion coefficient. The failure of the kinetic theory at low temperatures and 
high densities is obvious: at high densities the theory predicts too high 
values for the diffusion coefficient. In contrast, at low densities the 
theoretical values are too low. Figure 6 shows a plot of four predictions for 
the dependence of n'D* on e* that may be helpful for understanding the 
low-density regime of the kinetic theory. The MD data at density n*= 0.1 
(triangles) are compared with kinetic theory evaluated using the MD 
values for the pair correlation function at density n* = 0,1 (pluses) and with 
the kinetic theory using g2(a+), respectively g2(R- )=e  ~ (squares), as 
input. The latter case corresponds to the limit n * ~ 0 .  For comparison 
the Boltzmann-theory predictions are plotted (octagons). (~8) The main 
difference between Boltzmann theory and our kinetic theory is that in our 
theory all collisions at discontinuities of the potential are uncorrelated, but 
in the Bottzmann case only sequences of collisions that describe a complete 
scattering process are uncorrelated; during the scattering process, 

O 

pC " "~ 0 

Fig. 5. Ratio between kinetic theory and MD values of n 'D*  as a function of n* and e*. 
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Fig. 6. The dependence of n'D* on ~* at n * =  0.1, as obtained from (z k) MD simulations, 
(O)  the Boltzmann equation, ( + ) our kinetic theory with gz(a ~) and g2(R ) obtained from 
MD simulations, and ( [ ] )  our kinetic theory with low-density values for g2(a + ) and gz(R ). 

correlations among entering, reflecting at the hard core, and leaving the 
square well are not ignored. Of course, one hopes that in the regime of 
higher densities collisions with third particles will indeed destroy all 
correlations still present in the Boltzmann equation. Since no predictions of 
transport properties for square-shoulder molecules based on the Boltzmann 
kinetic theory are available, only the interval of positive values of e was 
plotted. The predictions of our kinetic theory in the limit n*--+0 are 
proportional to e ~* at e*=  0; the nonzero slope for n * =  0.1 is entirely due 
to the e dependence of the pair correlation functions. Obviously, the 
deviations between theory and MD results at low density are largely due to 
the neglect of correlations between subsequent partial collisions of identical 
pairs of particles. (19) 

For high temperatures an expansion in ~ of the expressions for n'D* 
for both our kinetic theory and the Boltzmann results may be helpful. 
For our kinetic theory an expansion of the function Z(e*) setting 
g2(R- )/g2(~r + ) = 1 yields 

~ (e* )=e  .2 ~ - g l o g \ 4  / + . . -  (4.1) 

where 7 is Euler's constant. The expansion starts with an almost quadratic 
term in e. The predictions of the Boltzmann theory for R* = 1.5 are (2~ 

3 
n * D * = g ~  1/2[1+~(e*)] 1 (4.2) 
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with 

-~(8") = e'f1 + e .2 ln(e*)f2 + e*2f3 

7 155 
f l  = - ~  + ] -~  ln(5) ~ 0.18 

9 
f : =  16 

1 7 9  45 / 1 8 ,  259 
f3 = - ~ + ~-~ [ln(4) - ~,] + ~ In / ] \ -~ - / -  ~ ln(5) 

Although, as stated above, the Boltzmann equation for the square- 
shoulder potential has not been solved explicitly, one easily convinces 
oneself that on expanding D* as a function of e* the linear term is the same 
as for the square-well potential. Hence D* in the limit n*-- ,0  has a 
maximum on the square-shoulder side. Our MD simulations do not 
capture this, because the lowest density considered still shows appreciable 
deviations from the Boltzmann results. The theory, on the other hand, 
exaggerates this effect and yields the maximum for D* at 8* = 0  for 
densities larger than n * =  0.2 only. 

On the square-well side at large e* our theory severely underestimates 
D*, which must be an effect of the existence of bound states. This may at 
first seem surprising, since one would expect the ignorance of bound states 
to result in an overestimate of D*. The following explanation seems 
plausible, however. As one sees from (3.5), our theory yields D* inversely 
proportional to g2(a+), or, equivalently, to the collision frequency. In 
reality, collisions between bound pairs have little effect on the diffusion 
process, since they do not affect the center-of-mass velocity of the pair. The 
MD simulations do not distinguish collisions between bound and unbound 
pairs of particles; bound particles clearly have a higher than average 
collision rate, hence the collision rate of the unbound particles is estimated 
too high. Indeed, the theory also does not take into account the reduction 
in diffusion rate as a consequence of being in a bound state, but apparently 
the overestimate of the collision frequency of unbound particles is the 
dominant effect. 

5. THE  V E L O C I T Y  A U T O C O R R E L A T I O N  F U N C T I O N  

The normalized velocity autocorrelation function (VACF) defined as 

F(t) := (vlx(0) vl~(t))oq/( Ev~,(0)] 2 >oq (5.1) 
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contains much more information on the dynamics of our system than the 
transport coefficients alone. The VACF is related to the coefficient of self- 
diffusion through the Green Kubo formula: 

2; D = - ~  dt F( t ) (5.2) 

The function F(t) satisfies the following three exact relations: 

F(0) = 1 (5.3a) 

0 F(t) flm{~oelq]vxAv~l~oe~ q ) (5.3b) 
Dt ~=o 

lira F(t) = 0 (5.3c) 
t ~ o 9  

The first relation is a trivial consequence of the definition of the VACF; the 
second formula states that matrix elements of our kinetic operator deter- 
mine the slope of the VACF at the origin exactly. The fact that this slope is 
not zero is a peculiar consequence of the discontinuities in our pair interac- 
tion potential, giving rise to instantaneous jumps in the particle velocities. 
Table I shows a test of Eq. (5.3b). The initial slope of the VACF obtained 
from our M D  simulations was determined by a least squares fit using a 
smoothed cubic splines method and compared to our theoretical 
expression. One sees that the M D  results are correct within their statistical 
precision. 

Table I. Initial Slope of the VACF As Determined from 
M D  Simulations [ r ' ( 0 ) ]  versus Its Theoretical Value [ - 1 / D  *(1~] 

Evaluated wi th  the Use of M D  Pair Correlation Functions 

n *  e *  / " ( 0 )  - -  1 / D  * ( b  

0 .1  - 2 . 0  - 1 . 1 2 4 5  - 1 . 1 2 7 8  

- 1 . 2 5  - 0 . 8 1 7 2  - 0 . 8 1 2 2  

- 0 . 8  - -  0 . 6 3 4 4  - 0 . 6 3 0 2  

- 0 . 5  - 0 . 5 4 0 4  - 0 . 5 3 8 3  

- 0 . 2  - 0 . 4 9 0 6  - 0 . 5 0 6 6  

- 0 . 0 5  - 0 . 5 2 9 1  - - 0 . 5 2 7 6  

0 . 0  - 0 . 5 4 8 0  - 0 . 5 4 1 9  

0 . 0 5  - 0 . 5 5 7 5  - 0 . 5 6 2 5  

0 . 2  - 0 . 6 4 9 1  - 0 . 6 5 2 9  

0 . 3 3 3  - 0 . 7 8 2 5  - 0 . 7 7 2 1  

0 .5  - 0 . 9 7 3 5  - 0 . 9 7 3 0  

0 . 6 6 7  - 1 . 2 7 4 8  - 1 . 2 5 7 2  

0 . 7 6  - 1 . 4 8 1 0  - 1 . 4 7 7 5  
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T a b l e  I. (ContinuedJ 

n* ~* F'(O) - 1 / D  *m 

0 . 2  - 2 . 0  - 3 . 3 7 7 6  - 3 . 3 6 9 0  

- 1 .25  - 2 . 2 4 3 1  - 2 : 2 6 2 0  

- 0 . 8  - 1 . 6 8 0 5  - 1 . 6 7 7 9  

- 0 . 5  - 1 . 4 0 5 4  - 1 . 3 9 3 1  

0 . 0  - 1 . 2 7 1 3  - 1 . 2 5 4 0  

0 . 2  - 1 . 4 3 4 6  - 1 . 4 1 6 6  

0 . 3 3 3  - 1 . 6 1 4 3  - 1 . 6 0 5 7  

0 . 5  - 1 . 9 2 3 5  - 1 . 9 4 2 1  

0 . 6 6 7  2 . 4 2 9 4  - 2 . 4 2 8 6  

0 . 7 6 0  - 2 . 8 1 4 5  - 2 . 7 9 9 4  

0 . 3  2 . 0  - 6 . 7 7 2 2  - 6 . 7 6 5 6  

- 1 .25  - 4 . 3 9 2 6  - 4 . 4 1 4 4  

- 0 . 8  - 3 . 2 4 5 0  - 3 . 2 5 1 0  

- 0 . 5  2 . 6 3 0 7  - 2 . 6 3 3 9  

- 0 . 2  - 2 . 2 6 1 8  - 2 . 2 6 2 8  

0 . 0  - 2 . 2 0 0 6  - 2 . 1 9 3 3  

0 . 4  0 . 0  - 3 . 4 9 9 0  - 3 . 4 5 1 0  

0 . 5  0 . 0  5 . 2 1 0 1  - 5 . 1 4 9 0  

0 . 2  - 5 . 2 1 8 5  - 5 . 1 1 6 7  

0 . 3 3 3  - 5 . 2 3 5 9  - 5 . 2 4 9 8  

0 . 5  - 5 . 5 5 5 0  - 5 . 5 5 6 1  

0 . 6 6 7  - 6 . 1 5 1 0  6 . 0 3 7 0  

0 . 7 6  - 6 . 3 6 6 5  - 6 . 3 8 7 8  

0 . 6  0 . 0  - 7 . 4 9 4 3  - 7 . 4 7 9 8  

0 . 2  - 7 . 3 1 7 4  - 7 . 2 9 7 0  

0 . 3 3 3  - 7 . 3 7 6 8  7 . 3 3 9 3  

0 . 5  - 7 . 5 0 6 9  - 7 . 5 3 9 6  

0 . 6 6 7  - 7 . 9 4 7 8  - 7 . 9 3 1 6  

0 . 7 6  - 8 . 2 4 4 1  - 8 . 1 8 8 9  

0 . 9  - 8 . 7 2 0 0  - 8 . 6 6 6 8  

0 . 7  0 . 0  - 1 0 . 7 5 6  - 1 0 . 7 2 0  

0 . 2  - 1 0 . 4 6 2  - 1 0 . 4 1 7  

0 . 3 3 3  - 1 0 . 3 1 5  - 1 0 . 3 8 3  

0 .5  - 1 0 . 5 0 2  - 1 0 . 5 2 3  

0 . 6 6 7  - -  1 0 . 8 2 8  - -  1 0 . 7 8 3  

0 . 7 6  - -  1 0 . 9 6 2  - -  1 0 . 9 9 9  

0 .9  - -  1 1 . 4 2 2  - -  1 1 . 3 9 5  

1.0 - 1 1 . 6 4 4  - 1 1 . 7 1 8  

0 . 8  0 . 0  - -  1 5 . 3 3 8  - -  1 5 . 3 2 4  

0 . 8 6  0 . 0  - -  1 9 . 0 0 1  

0 . 9  0 . 0  - 2 1 . 8 9 0  - 2 1 . 9 0 1  

1.1 0 . 0  2 7 . 8 3 7  - -  
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The third relation (5.3c) must be due to the fact that a system with 
hard-core repulsions is a mixing system. (2~i To lowest order (first Enskog 
approximation), our kinetic theory predicts an exponentially decreasing 
VACF 

F( t) = e - ~ t  

with ~ I ~ D *  if t is expressed in the dimensionless units introduced in 
Section 4. 

In Figs 7 and 8 the VACF is plotted for several temperatures at the 
densities n*=0.1  and = 0.7. The MD-VACF shows at least four 
qualitative deviations from a simple exponential decay. 

5.1. Bound States 

At low densities and temperatures one sees the influence of bound 
states. Figure 9 shows the logarithm of the time derivative of the VACF at 
n* =0.1. The effects of bound states are demonstrated by its oscillatory 
behavior. At densities higher than n* =0.2 no bound state effects can be 
recognized. 

6 1.2 
-2.0 

Fig. 7. The velocity autocorrelation function as a function of reduced time t* for several 
values ore* at n* =0.1. 
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1 
0.5 

i 
t ~ 1.5 2 0 

Fig. 8. As in Fig. 7, at the density n* = 0.7 

0 

i 
-2 

--~8 o 2 
0.76 

Fig. 9. The logarithm of the time derivative of the VACF as a function of t* at n * =  0.1. 
Bound-state effects manifest themselves through oscillatory behavior. 
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5.2. Another  S lowly  Decaying Exponential  Mode  

Figures l0 and 11 show a logarithmic plot of the VACF at several 
temperatures and at the densities n* =0.1 and = 0.6. In the high-tem- 
perature (low-e) regime at n * = 0 . 6  a second interval in which the 
logarithm of the VACF can be approximated by a linear function is clearly 
seen. It is important to notice that this second exponential decay is much 
slower than the first one. Therefore, higher Enskog approximations, which 
result in new, faster-decreasing exponentials, cannot explain the 
phenomenon. 

5.3. The Negat ive M i n i m u m  

Figure 8 shows that there is a negative minimum in the VACF at high 
densities and low temperatures. One possible explanation for the negative 
minimum is the cage effect: A particle that moves straight on in a dense 
fluid generates a density fluctuation. There is a greater probability to find 
no particle just behind the moving particle than in front of it. Therefore, 
after some time there is a higher probability to be moving opposite to the 
original direction within the "vacuum" left behind than to continue in the 
original direction. In this connection also notice that for motion in a 

-2 13c 

u 

2 
Fig. 10. The logarithm of the VACF as a function of t* at n* =0.1. 
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0 
3.33 ~s 

0.9 

-1 

- - 2  

- - 3  

t s  
2.5 

Fig. 1 t. As in Fig. 10, at n * =  0.6. A second regime of exponential decay is seen for not too 
large ~* and t* between 0.5 and 2. 

perfect cage the time integral of the VACF has to be zero because of (5.2), 
since the diffusion coefficient vanishes. Hence the VACF, which always 
starts out positive, has to become negative at larger times. A more quan- 
titative explanation of the negative minimum can be derived from extended 
mode coupling theory. (==) This theory attributes the minimum to a 
coupling of the tagged particle velocity to products of a diffusive mode for 
the tagged particle motion and an extended heat mode for the motion of 
the fluid. It should be noted that a negative minimum already appears in 
the case of a hard-sphere fluid at densities of n* = 0.8-0.9, but the effect is 
much more pronounced in the presence of an attractive potential. It is seen 
already at lower densities and at equal densities the minimum is much 
deeper for the square-well system than for the pure hard-sphere system. 

5.4. Long-Time Tails 

MD simulations at hard-sphere systems with many particles (--~4000) 
demonstrate the presence of algebraically decaying long-time tails/23~ The 
limited number of particles in our simulation prevents us from observing 
this phenomenon in our results, but since the long,time tails can be predic- 
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ted quite generally from hydrodynamic arguments, they should be present 
in the square-well system as well. 

We conclude that the behavior of the VACF for the square-well fluid 
not only is much more complicated than the almost exponential decay 
resulting from the Boltzmann equation, but even shows much more com- 
plexity than pure hard-sphere systems at comparable densities. At low den- 
sities this is mainly due to the occurrence of bound states, whereas at high 
densities mode coupling and extended mode coupling effects appear to be 
important. The latter seem to give rise to much more pronounced negative 
minima in the VACF than those found for pure hard-sphere systems. In 
addition, we found the appearance of a second exponential regime of 
slower decay rate at reasonably high densities. Our speculation is that these 
are due to collective effects involVing moderate numbers of particles, e.g., 
the motion of particle complexes, but we have no further evidence to sup- 
port this. 

6. D I S C U S S I O N  

Our comparison between an Enskog-type kinetic theory for a square- 
well fluid and the results of molecular dynamics simulations reveals that 
the region of applicability of the kinetic theory is rather restricted. Around 
n*= 0.3 the theory works reasonably well; the relative change of D* as a 
function of e* is described fairly accurately, although an underestimation of 
D* by about 10%, already present in the hard-sphere case, persists 
throughout the square-well regime. At lower densities our theory 
underestimates D* as a result of the overestimation of the collision 
frequency for unbound particles we discussed in Section 4. For higher 
densities our theory increasingly overestimates D* with growing e*. This 
obviously must be due to the neglect of extended mode coupling 
contributions, which, as seen in the previous section, produce a negative 
minimum in the VACF of a magnitude that increases rapidly with e*. 

A good theoretical description of the square-well system at high 
densities may be obtainable by adding ring terms and perhaps repeated 
ring terms to the Enskog-like kinetic equation discussed here, since these 
terms do account for mode coupling and extended mode coupling 
effects. (22) Similarly, at moderate densities, i.e., n*< 0.3, a theory is needed 
that accounts for correlations between partial collisions among the same 
pair of particles and especially takes bound states into considerationJ ~4) In 
either case the theory treated here will be an essential ingredient of a more 
complicated theoretical framework, and in addition will serve as an 
important reference point in limiting cases. 

Finally, notice that for the square-shoulder potential in all cases 
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investigated here the agreement between theory and simulation results is 
markedly better than for the square-well potential. It is roughly of the same 
quality as the agreement between Enskog's theory and the simulation 
results for hard spheres. The following feature is remarkable, however: as 
e* runs between 0 and - ~ ,  the square-shoulder system interpolates 
between two hard-sphere systems at different dimensionless densities. Yet 
at intermediate values of ~* (notably e * =  2 at n * =  0.2 and e* = 1.25 at 
n * =  0.3) theory underestimates D* by more than ever happens for a pure 
hard-sphere system at densities intermediate between the limiting ones. 

Obviously in the treatment of realistic fluids the interparticle attrac- 
tions offer some of the hardest problems one has to deal with and on the 
kinetic theory level quite complicated equations seem needed to do so. 

A P P E N D I X  

In this Appendix we approximately evaluate the formal expression for 
the coefficient of self-diffusion 

D =  - lira <qoeq(v)Uxl 1 ~ o  ~ Iv~~ 

It ,may be considered as a matrix element of ( A - v ) - '  under the inner 
product (3.4). One way to calculate this matrix element approximately is 
by replacing A by a finite-dimensional matrix A,, defined on a suitably 
chosen basis q~ ( i=  1, ..., n) and inverting this matrix. The most common 
choice for the function q)~ is 

=~.F(i)F(5/2)m~ 1/2 . ( mv2~ 
q~i(v) [_r(i+ 3/2)kBTJ vxS~}z')\2kBT/ q)*q(v) 

where q(r) is a Sonine �9 , (9) polynomm~. In the solution of the  Boltzmann ~3/2 

equation this choice inserted into An yields the so-called nth Enskog 
approximation to the diffusion coefficient. (9'25) The functions q)i are 
orthonormal with respect to the inner product (3.4), that is, 

(qo~(v) ] q~j(v) ) = g~j (A.i) 

As (0t(v) = (m/kB T)l/21)x@eq(v), w e  have 

D= - k  R T/m l im{(A- -v ) - I } l  ~ 
v ~ 0  

Denoting the matrix elements of A with respect to rpi as A~, we find the 
following approximate expressions for D: 
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For n = 1 

D(~)_ kBT 
mA 11 

For n = 2  

D(2) = kB T (1 A~2 
-mA~---~l \ + A11Az2-AI2J2 

etc. 
These are well-known results for the first and second Enskog 

approximation to D.(9) 
The calculation of the matrix elements A,y remains to be done. With 

the aid of (2.12) these can be written as 

Mo= f dv1 f du f dr2 {(peq(l)l)}-1 (Pi(u T12 g2(FI2)n@eq(v2)(pj(VI) 

After a lengthy calculation, which was largely performed on a computer, 
we found for the square-well potential 

1 
Aij= - - -  [g2(a+)f2ij(oo)+ R*2g2(R )(20-(e*)] 

to 

with 

m )1/2 1 

'o= 4n 2 

and 

, - 1  { = ( e , ) _  e ,  2 

, 59 

12,,/70 

- e ~*(4e*- 2e'3)} 
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- 1  f 1 3 9 _  , ~,2 g*/2 

) - e  o" - . 5  

F o r  the s q u a r e - s h o u l d e r  p o t e n t i a l  one  has  to replace  g2(R ) by g2(R § 

othe rwise  the  express ions  r e m a i n  the same.  
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