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The Effects of Thermal Noise in a Rayleigh-Benard 
Cell Near Its First Convective Instability 
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Recent experiments by Meyer et al. on the onset of convection in a Rayleigh 
Benard cell near the first convective instability can be described as being caused 
by random noise terms in the currents of heat and momentum, but the 
amplitude of these terms turns out to be about 105 times as large as would 
follow from standard fluctuating hydrodynamics. 
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1. INTRODUCTION 

In recent experiments on the initial stages of pattern formation in a 
Rayleigh Benard convection cell, Meyer e t  al. I1) observed very irregular 
patterns. In these experiments, the fluid was subjected to a heat current 
that varied either linearly or periodically in time from below to above the 
onset of the first instability. If the side wall of the cylindrical cell was made 
of a material with a thermal diffusivity different from that of the enclosed 
fluid, a reproducible circular roll pattern was observed at the onset of 
convection. However, if the thermal diffusivities of side wall and fluid were 
the same, the pattern at onset was found to be quite irregular and 
irreproducible. 

A plausible explanation would be that the onset of patterns is 
caused by stochastic fluctuations in the currents of heat and momentum. 
Adding the Landau-Lifshitz expressions for these fluctuations (ref. 2, 
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Chapter XVII) to the hydrouynamic equations, Ahlers et aL ~3) calculated 
the resulting increase of the average convective current as a function of 
time. They employed slip boundary conditions at the wall of the vessel and 
assumed that the fluctuations only affect the single eigenmode of the 
hydrodynamic equations that determines the new stationary state above 
the instability. They found then that the noise level following from the 
Landau-Lifschitz fluctuations was about a factor 10 - 6  tOO small to explain 
their experimental observations. 

The assumption of a single relevant mode is not realistic, however, 
since there are several modes that become unstable at Rayleigh numbers 
just above the critical Rayleigh number for onset of convection. Eventually, 
only one of these stabilizes, but at times near the onset time all of them 
may get excited. In this paper, we describe a calculation that takes into 
account the effects of all the modes that become unstable at or just above 
the critical Rayleigh number. In addition, we use the more realistic 
stick boundary conditions, appropriate for the experimental situation. 
Consequently, we find an enhancement of the effect of the fluctuations by a 
factor of about 40 compared to the previous estimate. This is still far too 
low for explaining the experimental results, so that one has to conclude 
that internal thermal noise cannot be the driving force for the onset of con- 
vection in the experiments by Meyer et al. A preliminary account of these 
results was given in ref. 4. 

2. E I G E N F U N C T I O N S  OF T H E  L I N E A R I Z E D  F L U C T U A T I N G  
H Y D R O D Y N A M I C  E Q U A T I O N S  

Consider a fluid in a uniform gravitational field with gravitational 
acceleration g, between two horizontal plates located at z l = - d / 2  and 
zz=d/2 and kept at temperatures T I > T 2 ,  respectively. For our 
calculations we will assume periodic boundary conditions in the x and y 
directions, although this does not agree with the experimental situation to 
be described. Later we will argue that the precise form of these lateral 
boundary conditions is unimportant. 

For not too large temperature differences, the stationary solution of 
the hydrodynamic equations below the critical Rayleigh number R c 
consists of a vanishing velocity field and a temperature and a pressure field 
with uniform gradients in the z direction. Besides being stationary, this 
solution is also stable. For Rayleigh numbers R > R c  the same type of 
solution still is stationary, but it is no longer stable. 

For small deviations from this stationary solution, both at subcritical 
and supercritical Rayleigh numbers, the hydrodynamic equations can be 



Thermal Noise in a Rayleigh-Benard Cell 79 

linearized around this solution. Collecting (5) the deviations of the 
hydrodynamic fields from their stationary values into a vector 

.{  p(r, ,) ) 
cSa(r, t )= [cST(r, t) (1) 

\ t) 

one can write linearized fluctuating hydrodynamic equations as 

8t 6a(r, t) = - h ( r )  6a(r, t) + 6F(r, t) (2) 

Here h is a linear differential operator, defined in ref. 5, and 6F is a 
stochastic noise term with vanishing stochastic average (6F(r ,  t)) ,  where 
the average is taken over a Gaussian distribution of 6F. More explicitly, 
6F can be written in the form 

, [ -  [(7 - 1)/~T]V.bQ(r, t ))  
6F(r, t )=  [-(1/pc~)V.6Q(r,  t) (3) 

\ (1/p)V-6T(r, t) 

Here p is the mass density, 7 = Cp/Cv with cp and c~ the specific heat per unit 
mass at constant pressure and volume, respectively, c~ is the thermal expan- 
sion coefficient, 6Q is the random heat flux, and 6T is the random stress 
tensor. The covariances of the random currents are given by the Landau-  
Lifshitz expressions (2,5) 

( 6Qi(rl, tl) 6Qj(r2, t2) ) = 2kB T226ub(rl - r2) 6(tl - t2) 

(6Qi(rl, t l)6T~(r2, t 2 ) ) = 0  (4) 

(6 Tij(r 1, tl ) 6Tkt(r2, t2) ) = 2kB T[rl(fikfjt + 6it6jk 

- ~-~,j~kt) + ~6, j6~] 6(r l  - r 2 )  6(t~ - t2) 

with 2, q, and ff the thermal conductivity, the shear viscosity, and the bulk 
viscosity, respectively, and kB Boltzmann's constant. These hydrodynamic 
equations have to be supplemented by boundary conditions at the walls of 
the vessel. Most experimental situations correspond to stick boundary 
conditions, i.e., vanishing fluid velocity and no temperature jump at the 
walls, but in hydrodynamic calculations one often also uses slip boundary 
conditions, i.e., no tangential stresses and no temperature gradient 
perpendicular to the walls. The form of the hydrodynamic equations can be 
simplified by expansing 6a in right eigenfunctions of the operator h. We 
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will only be interested in those eigenfunctions that become unstable for R 
equal to or just above Rc. These can be labeled as aRk~,, with kll their wave 
number  in the horizontal plane and n labeling their z dependence. The 
hydrodynamic fields can be expressed in terms of the a R as kiln 

R r cSa(r, t ) =  ~ aklln(t ) ak,ln ( ) (5) 
kiln 

The coefficients ~k,~,(t) can be obtained as 

a c a) (6) ~ k ~ ( t )  = ( kll., 

where the inner product ( . , - )  is defined through (f, g)=~vf*(r)g(r)dr 
and the c akH ~ are the left eigenfunctions of h, satisfying 

a L a R - 6~, (7) 
( k!ln, kl'ln') - -  ~klbk(i 

Since near R = R~ only modes with n = 1 are relevant, we restrict ourselves 
to these modes. Taking the inner product of Eq. (2) with L ak H 1, one reduces 
the hydrodynamic equations to a set of linear stochastic differential 
equations for the coefficients ek~(t) of the form 3 

C3~kl I (t) 
at - ,~ , , (R(0)  ~, , ( t )  +A,,(t) (8) 

where we suppressed the subscript 1, as we will do in the rest of the main 
text. 

Near  Re the eigenvalue )~k~ depends on R according to (5) 

1 r R~-R (kll-k,lcl2 I 
2k, , -  Z o t D L - - - ~ c  + A  2 . . . .  (9) 

\ kllc / A 

Here t D is the thermal diffusion time, to = d2/Dr, with D T =  2/pCp and p is 
the mass density, kll C is the value of kll for the modes that become unstable 
at R =  Rc and Zo is a dimensionless constant depending on the Prandtl 
number  P = v/D T, with v = q/p. In the Appendix, we give an expression for 

3 If the Rayleigh number depends on time, the modes a ~ ,  and a ~ ,  depend on time as well, 
since they are functions of the Rayleigh number. This does not change Eq. (8), however. For, 
in this case there is an additional contribution to O~,/St (i = kiln) of the form (dR/dt)(Sa~r/SR, 
Zj  c~ja~). The term with j =  i vanishes, since Oar/OR is orthogonal to air by virtue of conser- 
vation of normalization. Because a change in R does not affect the x and y dependence of 
the a~, the modes j that could contribute must have the same kll as a~, hence a different n, 
i.e., n r 1. But' these modes do not contribute to (8) either, since they are not excited and 
hence the corresponding ej vanish. 
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ro in terms of the eigenfunctions of the hydrodynamic operator h. Finally, 
A2 is another dimensionless quantity, which for stick boundary conditions 
is ~ 1.46. The fluctuating force fk,~(t) in (8) is again a Gaussian random 
noise term with vanishing average. Its variance is obtained by substituting 
(5) into the left-hand side of (2), taking the inner product of this equation 
with a L multiplying the resulting equation with its complex conjugate, kl[ '  

and employing (4). The result is 

(f*,,(t) fk(,(t') ) = 2Ff(t - t')ak,ki, , 

with 

(10a) 

k ,  TDT / c~gT .~ (10b) 
F=p-j~roV~ l + cpdT/dz j 

In the Appendix, the derivation of this result is considered in more detail. 

3. T I M E  E V O L U T I O N  OF A M P L I T U D E S  A N D  
C O N V E C T I V E  C U R R E N T  

By integrating (8) from an initial time to up to t, multiplying the result 
by its complex comjugate, and employing (10a), one finds that the average 
squared amplitude ([%~(t)[ 2) satisfies an ordinary differential equation of 
the form 

a( I~,,,,(t)l~> 
Ot - --22klt(R)(l~kll(t)l)2 + 2F (11) 

The solution of this equation can be given straightforwardly and reads 

([%,,(t)l 2) = (l%~L(t)12)det + ([%,,(t)[2)st (12) 

where the deterministic contribution is given by 

If/ } ([~ku(t)12)det=exp dr [--22k,(R(z)] (Ic~kH(to)l 2) (12a) 
0 

and the stochastic contribution by 

Since we will consider experiments in which the convective heat current 
J ..... in the Rayleigh-Benard cell is measured, we express J . . . .  in terms of 
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the amplitudes 10~klil 2. In the Appendix, we show that the amplitude of the 
convective heat current at constant Rayleigh number can be expressed as 

J . . . .  =-1 f dr pCpUz(r) 6T(r) (13) 
d 

Note that, although for given r the convective heat current density J . . . .  (r) 
in general is composed of three contributions--the "obvious" convective 
heat current pCp Uz(r  ) 6 T ( r ) ,  a local conductive contribution - pcpD v O•T/Oz, 

and a viscous heating contribution--their sum after integration over x 
and y does not depend on z and is given by (13). If the Rayleigh number is 
varied slowly, i.e., on a characteristic time scale that is large compared to 
roto, as is the case in the above-mentioned experiments, (13) is an 
excellent approximation. Inserting (5) into (13) and expressing the 
resulting integral over uz 6T in terms of the constant % introduced in (9), 
one obtains the relation 

J . . . .  _ SD TpCp 
o~gdZzo ~ (I~kH(012) (14) 

kll 

with S the area of the cell. We will normalize Jconv by dividing it by the 
conductive current Jo of a stationary system at the onset of convection, 
which is of the form 

J~ pcpDr -~z c (15) 

where (dT/dz)c is the temperature gradient at the critical Rayleigh 
number. Hence, using the explicit form of the Rayleigh number R = 
~g(dT/dz)d4/vDr, one finds 

Jconv d2 
JoS - DTvRo% ~" ( 1%'(012 > (16) 

kit 

where the time dependence obviously is determined by Eq. (12). 

4. E X P E R I M E N T A L  A P P L I C A T I O N S  

In ref. 1, Meyer et al. describe two experiments, which can both be 
discussed on the basis of the equations developed above. 

4.1. The  Ramping  Exper iment  

In this experiment, the total heat current at the lower plate of the 
Rayleigh-Benard cell is increased linearly with time. In Appendix C of 
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ref. 3, it was shown that under these conditions also the temperature dif- 
ference between the plates, and therefore the Rayleigh number, increases 
linearly with time until the convective current becomes noticeable [see 
Eq. (C6) of ref. 3]. In that case, the time dependence of the Rayleigh 
number can be written as 

R(t)  = R~.(1 + flt/tD) (17) 

with the time origin chosen as the moment at which the critical Rayleigh 
number is reached. The constant fl is called the ramping rate. For  initial 
Rayleigh numbers that are well below Re, the time dependence of J~onv/Jo 
is found from (16), (12), (10b), and (9) to be 

. . . .  

~ 2- exp - -  to  k,,c j 

• O 
',~-7 , ~ll~--7 J J 

--2kBTgD(S~__~I/2 f L A . ~  2 kli-kil( . 2 2  

/ J  (is) 

Here O(x), the unit step function, approximates the error function that 
results from (9) and (12b). The integral over t' in (12b) was approximated 
by a Gaussian integral from - o o  to o% the second term between square 
brackets of (10b) was neglected, since it is very small compared to unity 
under the experimental conditions considered. For  large aspect ratios the 
summation over kll may be approximated by an integral. 4 The density of 
eigenfunctions in kit space equals S/4rc 2. If one neglects the fourth-order 
term in k l l -  kllc in the exponential, which is allowed for t/tD ~> 1, another 
approximately Gaussian integral remains and one obtains for the ramping 
experiment 

J----o- "~ \2-fi-t J A p ~ o d 3 v R c ~o ~ (19) 

where ac = kljcd. 

4 In this approximation the precise nature of the boundary conditions at the side walls indeed 
becomes unimportant. 
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4.2. The Oscillating Experiment 

In this case, R(t) is a periodic function of time, which assumes 
alternatively values larger and smaller than Rc. A typical example is shown 
in Fig. 1. At the initial time to the system is prepared in a particular mode, 
characterized, for example, by k ll. Experimentally it is then found that 
whether or not the observed convection pattern is periodic in time depends 
quite sensitively on the time dependence of R(t). In a series of 
experiments ~1) (R-Re)IRe was modulated sinusoidally with amplitude 6 
around an average value e. When 6 and e were varied, the experiments 
could be understood by assuming that the initially imposed pattern per- 
sisted if (R-Rc)/Rc never dropped below a certain threshold value, 
whereas it was replaced by a different, stochastically varying pattern if this 
quantity did drop below the threshold value. 

Our conjecture is that the persistence of the initial pattern is deter- 
mined by the minimum of the ratio of the deterministic amplitude of the 
initially imposed mode to the average amplitude of the modes generated 
stochastically by the noise in the system. These two quantities follow from 
(12a) and (12b), respectively, as 

(l~kr~(t)12>det= (lCtk,,(tl)12> exp l-- 2 ft'x dZ 2k,,(V) ] (20a) 

E~ 

t., 

f 

Fig. 1. Typical behavior of the Rayleigh number in time, in the ocillating experiment. 
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and 

l k~, [~k,,(t), 2Is t f ' d r e x p [ - 2 f [ 2 k ( ( t ' ) d t ' l F  (20b) 

where ([~kt~(tl)] 2) has to be determined from the hydrodynamic equations 
for R > R , .  

Comparison between our predictions and the experimental results of 
Meyer et al. is made in the next section. 

5. DISCUSSION 

5.1. The Ramping Experiment 

In order to make a comparison with Meyer et al., we interpret, as they 
do, the expression (19) for the time dependence of the convective heat 
current in the ramping experiment as resulting from the excitation of an 
effective single mode. Then, the convective heat current is described by an 
equation similar to (8), i.e., 

8~(t) 1 R ( t ) -  R c 

- - =  - -  ~(t)+ f ( t )  (21) 
8t "COt D Rc 

with ( ~ 2 ( t ) ) = J  . . . .  /Jo, ( f ( t ) ) = O ,  and ( f ( t ) f ( t ' ) }=2Fr  To 
obtain agreement with (19), one has to choose a different value of FCf~ for 
each time to and then so solve (21) as though Fe~ had this value for all 
times; the result for (~2(t)} then has the correct value for t=  t 0. The 
explicit form of FCrf is then 

kB ra~c ( to ~1/2 
F~fr(to) = 2Apzod3vRc \ ~ /  (22) 

The time dependence ...to 1/2 is caused by the fact that the off-critical 
modes grow slightly more slowly (or decay a bit faster) than the critical 
ones. In ref. 3, the time evolution of the convective curent is described by 
an equation of the form (21), but with an f ( t )  that contains, instead of 
Feff, 5 

k. d 2 (3 1J 2 
FAcns = D~pdro(1 + P) St D \Re] (23) 

This result follows from (4.20), (D20), and (D18) of ref. 3. An extra factor t51 in (23) results 
because t in ref. 3 corresponds to t/tD in our notation. As a result, f in ref. 3 corresponds to 
fto here and 6( t - t ' )  in ref. 3 to tD6(t--t') in our units. Hence, their F corresponds to 
Zo tD FACHS. 



86 van Beijeren and Cohen 

The main qualitative difference between (23) and (22) is that FACHS is 
inversely proportional to the horizontal area S of the system, whereas for 
large systems our F is independent of this quantity. 

To compare (22) with the experiment on water in a cylindrical con- 
tainer described in ref. 1, we used the parameters T2 = 2.99 K, T 1 -  T2 = 
2.65K, D r ~ - l . 4 7 x 1 0  3cmZ/sec, P=6 .0 ,  d=0.318cm;  3.18cm for the 
radius of the cylinder, and the values Re= 1707.8, ac= 3.117, A 2= 1.46, 
and % 1 =  19.65P/(P+0.5117)= 18, valid for stick boundary conditions. 
Inserting these values into (22) for t / to= 1, one finds that ZotoFerr~ 
4 x 1 0  -11, whereas %tDFAcHS~10 12, i.e., about a factor 40less. 
Experimentally, Meyer et al. obtained a value of about 6 x 10 7 for this 
quantity, so that we have to conclude that the noise driving the pattern 
formation in this experiment is not internal thermal noise as described by 
the Landau-Lifschitz fluctuations. 

It is not clear what the source of the noise driving the system could be. 
Mareschal and Kestemont (6) describe computer simulations on a Rayleigh- 
Benard cell filled with hard disks in two dimensions, and suggest that the 
onset of pattern formation may be governed by thermal fluctuations at the 
walls of the system. However, in their system the ratio of the plate distance 
to the disk diameter is in the range between 10 and 100, whereas it is on 
the order of 10 7 in the real fluid experiments described above. Therefore, 
these boundary effects can be estimated to be about five orders of 
magnitude smaller than in the simulations of Mareschal and Kestemont, 
which makes them completely insignificant for the experiments of Meyer 
et al. 

5.2. The Oscillating Experiment 

Consider a sinusoidal modulation of the Rayleigh number of the form 

[R(t) - R,]/Rc = e + 6 sin s (24) 

as pictured in Fig. 1. In order to predict the type of behavior seen in the 
experiments, we want to determine the strengths of the deterministic and 
the stochastic currents, using Eqs. (11), (12), and (14). We first calculate 
J~o~tv for tl (Fig. 1 ). 

For large enough amplitudes and not too large frequency f2 the system 
will be close to a convective stationary state during the major part of the 
time intervals where R > R c .  Then the fluctuating terms in the 
hydrodynamic equations can be ignored and the convective current follows 
a deterministic equation of the form 

3 a~t - 2 a~t 
--  = - -  [ J  . . . .  ( t ) - J ~  ] (25) & J  . . . .  (t) ro ts  
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where J~ ) is the stationary convective current at Rayleigh number 
R > R c .  Here we assumed that the slowest decay rate of perturbations 
around the stable stationary state is given by (1/rotD)(R-R,,) ,  as is the 
case :for slip boundary conditions. ~*) From Eq. (2.30) of ref. 4, we take as an 
approximation for J~ 

J~ o = 0.84(R - R,,) (26) 

Provided 2(2/~0>> 1, the current at time tl is determined mainly by the 
values of R(t) during a small time interval preceding t~. In this case, a 
linear approximation 

R(t)  ~ (h - t) ~(~, 8) 

is allowed for t < t~, with 

[ (~)2]1/2 (de(t)) = 8  1 -  a 
fl(e, 8)= --tD \ dt 2,=,, 

An approximate solution of (25) for t = t~ is then 

J~2~(tl )/Jo ~ 0.42 [TrVo fi(e, 6)] u2 

Using (28) as the starting value for (12a), we find for t >  t 2 

J . . . .  jo(t----~)~ 0.42[~%fl(< 8)] 1/2 exp to---- ~ 1 - 

(27) 

(28) 

x exp ~o t------~ R~ 

- -  ~ arccos 

(29) 

Next we calculate J2ton v for t > t2. A linear approximation, similar to 
(27), for the time behavior of R in the neighborhood of t 2 yields a 
stochastic convective current J2~onv of average strength 

J~to,v( t )/J o ..~ 2Fefft o[rCZo/fl(g , 6)] I/2 

f5 x exp(2/%tD) dz [R(r) -- Rc]/Rc (30) 1 
From (29) and (30) we conclude that jact and js, are of equal strengths if 8 
and e are related by the equation 

tof2 
8 = 4{ [1 - (e/8) 2 ] 1/2 _ (a/8) arccos(#8 ~ log 0.2 lfl(e,Fo~rtD 8) (31 ) 
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In Fig. 2, we plot relation (31) for f2= 1, with to1= 18 and the value 
rotDFerr= 6 x 10 7, as obtained by Meyer et al. in the ramping experiment. 
In addition, we draw in the experimental points indicating the boundary 
between deterministic and stochastic behavior, as given in Fig. 5 of ref. 1. 
Obviously these points are quite close to the curve defined by (31); hence 
the results of the ramping experiment and those of the oscillating 
experiment are consistent with each other, as has been remarked by Swift 
and Hohenberg (9) on the basis of a different calculation. 

We based all our considerations on the linearized equations (2). One 
may wonder how the nonlinearities that were left out of our analysis (cf. 
ref. 3) would affect the results. We first note that the magnitude of the non- 
linear contribution that should be added to (8) equals that of the linear 
term only when the system is in its convecting stationary state. The ratio of 
the nonlinear contribution to the linear one can be estimated by the ratio 
of the actual convective current to its stationary value. This ratio remains 
small during the onset period. Second, the effect of the nonlinear term 
usually is to suppress the amplitude, as can be seen, e.g., from Eqs. 
(2.1)-(2.2) of ref. 3. Hence, inclusion of this term'will not improve our 
estimates. 

Even though we had to conclude that the experiments of Meyer et al. 
cannot be explained as being driven by internal thermal noise, the theory 

W 

60 

o o 

e3 

[!3 
I I I L I 

0.00 .25 .50 .75 1.00 i. 25 

8 

Fig. 2. The line gives the locus of points in the e/6 versus 6 plane for which the deterministic 
and the stochastic convective currents reach equal amplitudes. The data points are experimen- 
tal points, taken from Fig. 5 of ref. 1, that mark the boundary between periodic and stochastic 
behavior. 
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developed here may be relevant to the experiment. For, as long as the 
stochastic contributions to the heat and momentum current can be 
described as Gaussian white noise with a variance F that is approximately 
constant for all modes that become unstable for R just above Re, all our 
equations can be applied, except for (10b), which must be replaced by the 
appropriate value for F. 

We remark that experiments similar to those carried out here for a 
Rayleigh-Benard cell could also be conceived for Taylor-Couette  flow. If 
then, as in the Rayleigh-Benard case, there are many different critical 
modes, the possibility of stochastic irreproducible patterns like those obser- 
ved by Meyer et al. exists. 

A P P E N D I X  

In ref. 7, the hydrodynamic operator h(r) is derived as 6 

h(r) = 

0 - OJ-7 DTA ~ / V  - gpe= 7 
ZT Zr 

1 0 - -TDrA ' / - 1 v + d T ~  (A.I) --~z e z 

1 V+gzTe~ --g~ez --vA] (F~-  v) VV 
P 

Here A is the Laplacian, Zr the isothermal compressibility, and F t the 
longitudinal viscosity. The fluctuating hydrodynamic fields in a Rayleigh- 
Benard cell relevant in this paper are superpositions of so-called viscoheat 
modes, which are a specific type of right eigenfunction of the operator h(r) 
satisfying the boundary conditions. They generally are of the form [see 
Eq. (7.5) of ref. 7] 

( 0 1 
x ( v  x 

exp(ikll �9 rlt) (A.2) 

where n is a discrete index labeling viscoheat modes with different z depen- 
dence but the same kll. The functions T~Fn(z ) and Vff ~(z) are of the form 

II 

Tff , n(z) - c~gd4k~l On (A.3a) 

Vffn(z)=,j W ~ ( d  ) (A.3b) 

6 Actually, Eq. (5.13) of ref. 7 gives the Fourier transform of this operator with respect to x 
and y. 
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respectively [-see Eqs. (4.10) of ref. 5]. For n = 1, which describes the only 
modes of importance for R near Re, the specific forms of these functions for 
stick and slip boundary conditions, respectively, are given in Eqs. 
(6.21)-(6.22) of ref. 5. The corresponding left eigenvectors of h(r) are given 
in Eq. (7.5) of ref. 7 as 

[ \ 
L r - -  aklln ( ) - - [  T~,,(z) / exp(ikll 'rll) (A.4) 

\ (1/k~,)Vx(V• Vk,.(z) / 

with T/~l. and V~l . specified in (4.10) of ref. 5 as 7 

TG( ) -   (dv/dT) d4k On* 
(A.5) 

1 

where the star denotes complex conjugation. The eigenvalue of the critical 
viscoheat mode at R = Rc equals zero. In first-order perturbation theory 
the deviation of h(r) from its form at R = R,. is given by 

bh ( r )=  0 0 [ (R-Rc )  / c](dT/dz)cez (A.6) 

~0 0 

Hence the perturbation of the eigenvalue of the critical viscoheat mode 
is 

- -  ~ a L  a R  c)  2k~(R) ( k, cbh, kll 

v(R - R,) f~/2 
- - - 5 - ~ - -  ! O(x)  W(x)  dx (A.7)  

d acRc ~-1/2 

where we used (A.2)-(A.5) and the property 

ez" (Vx (Vx e~))[exp(ikll �9 rll)] f (z)  = -k~lf(z ) 

Comparison to (9) yields 

1 P r | , / 2 0 ( x )  W(x) dx 
2 j  1/2 TO a c 

(A.8) 

The factor (2zc)2d for the infinite system treated in ref. 5 has been replaced here by V. 
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The stochastic force fk~(t) introduced in (8) follows from (2) by taking the 
inner product with a L kll 1 a s  

.fkl, (~t) ~-- a L ( kill' 6F(r, t)) (A.9) 

Inserting (3) for 6F  and (A.4), (A.5) for a L kill, one obtains an expression for 
the variance (f*L(t)fk~(t')) that can be evaluated through somewhat 
lengthy but straightforward calculations. The result is given in Eq. (10). 

Finally, we want to derive Eq. (13) for the convective heat current. 
Our starting point is the following expression for the local convective 
current density (ref. 2, Chapter V): 

with 
Jq -- J . . . .  + Jcond + Jvh (A.10) 

Jconv = pCpU 6T 

Jcond = --pc pD r VaT 

Jvh = r/(V �89 2 + U" VU) 

where we used that V - u  = 0 for viscoheat modes. Inserting (A.10) into the 
equation p%O~T/&=-divJq and assuming p, %, DT, and r/ to be 
constant, one obtains the following result for the time evolution of c~T: 

O~T-DTJ~T-V ' Iu (To+6T)+  ~1 (V �89  (A.11) 
~t pCp 

where To is the conductive temperature field that results from a uniform 
gradient in the z direction. The boundary conditions are u = 0  and 6 T = O  
at the boundaries. Averaging Eq. (A.11) over x and y, since we are only 
interested in the average of J q  o v e r  x and y, denoting such averages by a 
bar, and introducing the scaled variable ~ = z/d, we can make a Fourier 
representation of cST as 

(ST(~,t)= ~ [7,,(t) sin2~n~+~n(t)cos(2n-1)n~] (A.12) 
n = l  

where we took account of the boundary condition J-T= 0 for ~ = +_1/2. 
Applying a similar Fourier transform to the right-hand side of (A.11), one 
obtains the set of equations 

c3 (2nn)2] 
-~+ 7,(t)=C,(t) (a.13) 

to J 

{ O [ ( 2 n - - 1 ) n ]  2} 
-~-~ --  a,(t)= D,(t) (A.14) 

to 
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with 

~ 1 / ' 2  

Cn(t) = - 2  1/2 

-- 4nn ~ 1/2 

d o 1/2 

8 
d( sin 2nn( ~zz u~cST(z, t) 

d~ cos 2~n~ u~6T(z, t) 

(A.15a) 

(A.15b) 

D~(t)- 2t7 ~/2 d~cos(2n-1)~V'{V�89 u2+u'Vu} (A.16a) 
pep "~ - 1 / ' 2  

- 2 ( 2 n  - 1) ~/~1/2 
- -  " ~ T d  ~ 1/2 d( sin(2n -- 1) ~ 

8uz(z, t ~8(1u2(z, t)) t) (a.16b) x ( a~ +u~ a~ 

The solutions of (A.13) and (A.14) read 

~/~(t)={exp[-(2n~)2(t-t~ 
+fjodr{exp[-(2nn'2(t-r)]} to 

+~tdz{exp[-[ (2n-1)n]2( t -z ) l }  tD (A.17) 

where 7n(to) and 8n(to) are the initial values of 7n(t) and 6n(t), respectively. 
For a stationary system, Cn(z) and D,,(~) are constant, so that then to 

may be replaced by - o o  and the integrals over z can be performed 
immediately. 

For a quasistationary system, i.e., a system in which the typical time 
scale for variations in the hydrodynamic fields is ~ tD/n 2, we may replace 
Cn(z) and Dn(r) in (A.17) by Cn(t) and Dn(t), respectively, obtaining the 
approximate results 

tD 

tD 
5.(t) ~ [(2n - 1)hi  2 D.(t) 

(A.18) 
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Inserting (A.18) into (A.12) and that equation in turn into (A.10) leads to 
the following expression for Jcond: 

Jcona(Z, t ) = - e z p c p d  2 ~ [2-n~dCOS2~znr " Cn(t) 
n ~ l  

- 11 7rdsin(2n-1)n~Dn(t)] (A.19) 
( 2 n - )  

where we used the definition tD = d2/Dr �9 
Furthermore, it follows from (A.10) and (A.15b) and that u 6T is an 

even function of z, that the average of the purely convective current is given 
by 

J . . . .  (Z, t )=  pcpez 2~n Cn(t) (A.20) 
/ 7 = 0  

while (A.10) and (A.16b) give that the viscous heating contribution is 

d Dn(t) (A.21) Jvh(Z, t)=pcpe~ ~ (2n --1)~z 
n = 0  

Adding up the contributions (A.19)-(A.21), one arrives at the result of 
Eq. (13). For simplicity, the bars on J~onv have been omitted in the text. 

A C K N O W L E D G M E N T S  

The authors are most indebted to G. Ahlers, D. S. Cannell, and C. W. 
Meyer for drawing their attention to this problem and for many 
stimulating discussions. They also gratefully acknowledge helpful dis- 
cussions with Dr. R. Schmitz and Prof. Th. W. Ruygrok and they thank 
J. A. Leegwater for his help in preparing the figures and Diane M. Lott for 
typing the manuscript. This research was supported in part by the National 
Science Foundation under grant PHY82-17853, supplemented by funds 
from the National Aeronautics and Space Administration at the University 
of California at Santa Barbara. One of the authors (E.G.D.C.) 
acknowledges also support under Department of Energy contract 
DE-AC02-81ER10807. 

822/53/1-2-7 



94 van Beijeren and Cohen 

R E F E R E N C E S  

1. C. W. Meyer, G. Ahlers, and D. S. Cannell, Phys. Rev. Lett. 59:1577 (1987). 
2. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959). 
3. G. Ahlers, M. C. Cross, P. C. Hohenberg, and S. Safran, J. Fluid Mech. 110:297 (1981). 
4. H. van Beijeren and E. G. D. Cohen, Phys. Rev. Lett. 60:1208 (1988). 
5. R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 40:431 (1985). 
6. M. Marescha! and E. Kestemont, J. Stat. Phys. 48:1187 (1987). 
7. R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39:285 (1985). 
8. T. R. Kirkpatrick and E. G. D. Cohen, 3. Stat. Phys. 33:639 (1983). 
9. J. B. Swift and P. C. Hohenberg, Phys. Rev. Lett. 60:75 (1988). 


