
Physica A 170 (1991) 247-264 
North-Hol|and 

TRANSPORT IN STRONGLY DISORDERED CHAINS 

J. VAN P O L E N  and H. VAN B E I J E R E N  

Institute for Theoretical Physics, Princetonplein 5, P.O. Box 80006, 3508 TA Utrecht, 
The Netherlands 

Received 27 June 1990 

A one-dimensional hopping model is studied with a translation invariant hopping rate 
distribution proportional to v -° (0 < ~ < 1) for hopping rate v approaching zero. The long 
time behavior of the return probability and the mean square displacement of the hopping 
particle are calculated with the aid of a transfer matrix method. Previous results of Bernasconi 
et al. and of Stephen and Kariotis, obtained by different methods, are confirmed; results of 
Nieuwenhuizen and Ernst are found to be partly in agreement and partly in disagreement 
with the former. 

1. Introduction 

Approximately ten years ago Bernasconi et al. [1, 2] addressed the problem 
of hopping transport on disordered chains, in which the hopping rates between 

neighboring sites are independent random variables. If the average waiting 

time between subsequent jumps is finite, the hopping process  approaches 

ordinary diffusion for long times [1-4], although the disorder in the chain does 

give rise to long time tail effects [3], On the other hand, if the average waiting 
time is divergent, the hopping process does not approach diffusion for long 

times: the mean square displacement of a particle does not increase propor- 

tionally to time, but rather as a power t ~ with a < 1 [1-4],  and the probability 

distribution function for a particle starting out at a given point at t = 0 does not 

approach a Gaussian for long times. The model addressed here can be used to 

describe conduction in quasi-one-dimensional superionic conductors [1]. In 

addition it can be mapped on to Several other interesting 'disordered models in 

one dimension. Examples [2] are the harmonic chain with random masses or 
spring constants, excitations at low temperature in a Heisenberg chain and 
electrical lines with random conductances or capacitances. 

In this paper, we will treat the hopping process w i t h  divergent average 
waiting time by means of a transfer matrix method, which has been employed 
before to treat the stochastic one-dimensional Lorentz gas [5, 6], Different 
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methods have been used before: integral equation techniques were introduced 
by Bernasconi et al. [1, 2] and extended by Nieuwenhuizen and Ernst [3]; 
Stephen and Kariotis employed the replica method [4]. 

The main results of our  calculations are expressions for the long time 
behavior of the probability for having returned to the origin and for the mean 
square displacement of a hopping particle. Our expressions fully agree with 
those of Stephen and Kariotis, so, strictly spoken, we have not obtained any 
new results. Yet we think the paper is useful, for the following reasons: 

i) Bernasconi et al. do not give an exact expression for the long time 
behaviour of the mean square displacement, and Nieuwenhuizen and Ernst 
give an expression that is at variance with that of Stephen and Kariotis. Our 
results, obtained by an entirely different method,  provide a useful confirmation 
of the latter's results. 

ii) The physical interpretation of our method is quite straightforward, 
which, to our feeling, cannot be said of the replica method. 

The plan of the paper is as follows: In section 2 we introduce the master 
equation and the hopping time distributions, describing our system. Next we 
introduce a dual transformation of the master equation to make it more 
tractable. In section 3 we express the average Green 's  function for the hopping 
process in terms of the stationary eigenvector of a transfer matrix, and in 
section 4 we calculate the long time behaviour of the probability of being back 
at the origin and of the mean squared displacement. Finally, in section 5 we 
discuss our results and make comparisons to previous work. 

2. Master equation 

The probability P , ( t )  to find a particle at site n at time t evolves in time 
according to the master equation 

d 
d t  Pn( t )  = ½ ~,[P,,+l(t) - Pn(t)] + ½ 1 d n _ l [ P n _ l ( l  ) - P, ( t ) ]  . (a) 

The transfer rates v, are independent  random variables distributed according to 
a posit ion-independent probability density function O(v) ,  given as #~ 

( 1  - a)2°- v - "  , 

P ( " )  --  0 ,  

0 < v ~ < 2 ,  0 < c ~ < l ,  
e lsewhere.  (2) 

This distribution has been studied before in refs. [1-4]. A quantity of central 

,1 The quantity v in our notation corresponds to 2W in refs. [1-4]. 
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interest is the Green 's  function ( G , ( t ) ) ,  the average probability of finding a 
particle starting at the origin (n = 0) at t = 0, at site n at time t. The brackets 
indicate a combined average over all realizations of the hopping process at 
given values of the jump rates v,, and over the jump rate distributions p(v , ) .  

The latter average does include an average over a stationary initial distribu- 
tion of the hopping particle, in which the lattice sites are relabeled such that 
the starting position always is the origin. In principle this leads to an extra 
weighing factor for each set of jump rates { 1,, }, proportional to the stationary 
probability of finding the jumping particle at the origin under the realization 
{v,}. However ,  the stationary solution of (1) is of the form P, =cons tant ,  
independently of { v,) ,  hence this weighing factor for the present problem is 
simply unity. 

Accordingly (Gn( t ) )  may be found by solving (1) with the initial condition 
Pn(0) = 6,0 and averaging the solution over the probability distribution 

W{v.}= fi p{v.}. (3) 

For general n no simple closed form expression for (Gn( t ) )  has been found so 
far, but for (Go( t ) )  and for the second moment  ( x Z ( t ) ) =  En=_= nZ(Gn( t ) )  
different closed form expressions have been given in refs. [1-4]. Here  we will 
evaluate these quantities by means of a transfer matrix method,  which has been 
used before [5, 6], and reproduce the expressions given by Stephen and 
Kariotis [4]. 

For this transfer matrix method to be applicable one has to apply a dual 
transformation. Introducing 

j , ( t )  = Pn(t) - P,+l( t )  (4) 

one may rewrite (1) as #2 

d 
dt j . ( t )  = ½[vn_,j ._l(t  ) + V . . l j .+ l ( t  ) - 2v . j . ( t ) ]  . (5) 

To obtain ( G . ( t ) )  from (5) one has to solve it with initial condition j . ( 0 ) =  
6 . 0 - 6 . +1 ,  0 and average P. ( t ) ,  to be constructed from j . ( t ) ,  over W { p . } .  

• 2 Eq. (5) can also be interpreted as a master equation for occupation probabilities j.(t), with 
jump rates i,, that depend only on the site from which the jump originates. However, this process 
has as stationary solution j, = v~ ~ (the stationary solution of (1) corresponds to the trivial 
stationary solution j, = 0 of (3)). As a consequence the average over the jump rate distributions is 
ill-defined, because the probability of starting at the origin now has to be weighted by Vo ~ and with 
the distribution (2) the integral over volp(vo) is divergent. 
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Instead we may consider the solution /~(t) of (5), with initial condition 
/~(0) : 6~0, and average this over the same probability distribution. To under- 
stand this, first note that 

( j , , ( t ) )  - : ( J , , ( 0 )  ( 6 )  

because of translation invariance for averaged quantities. From the definition 
of ( in( t))  it follows that 

( j,,(t) ) : ( Pn(t) ) - ( P,,+ ,(t) ) (7) 

with initial condition P,,(O) = 6,,o. Hence one may conclude to 

( jn ( t ) )  : (P, ,( t ))  + f( t )  

with 

( s )  

f ( t )  independent of n. From (1) and (5) one readily derives the relations 

d 
~,, Pn(t) O, (9a) 

dt 

d 
~] ~,,(t) = 0.  (9b) 

d-~ n 

From the initial conditions one finds E Pn(t) = E j,,(t) = 1, therefore f ( t )  : O, 
and indeed { j,, (t)) : (P,, ( t)) .  Hence, replacing the notation ],, (t) by P,, (t), one 
finds the original problem may be replaced by that of finding { P,,(t)) for P ( t )  
satisfying (5) with initial condition P, ,(0)= 8,,.~,. 

3. Transfer matrix method. Formal expressions for (P,(z)), G(k, z) 
and (x2(z)) 

In this section, we will derive expressions for (P, ,(z)) ,  the Laplace transform 
of (P, , ( t ) ) ,  for G(k,  z), defined as the Fourier transform of (P,,(z)): 

G(k,  z) = ~ (P, , (z))  e ,k,, (10) 

and for (x2(z) ) ,  which, of course, is the 'Laplace transform of the averaged 
second moment (x2(t)) .  We start with some further definitions: Let W,,(t) be 
the probability that the particle, arriving at site n, will have to wait there for a 
period of time ~>t before it jumps again. For the process described by (5) we 
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have 

wo(t) = e . ( 1 1 )  

Let In(t  ) denote the probability density (p.d.) for a jump from n to n + 1 at 
time t, under the condition that the particle arrived at n at time 0 and stayed 
there between times 0 and t. By symmetry the p.d. for a jump from n to n - 1 
under the same conditions is the same. Wn( t  ) and In(t  ) are related through 

Wn( t  ) = 1 - 2 f I~ ( t ' )  d t '  . 

0 

(12) 

(11) and (12) yield 

I , ( t )  = ½v n e -~"' . (13) 

Finally, let fin(k, t) be the p.d. for the nth return to k at time t, under the 
conditions: 

1) at t---0, the particle is at site k; 
2) from k, it can only jump to the right, with jumping time distribution Ik ( t ) ;  

(This means that all jumps from k to the left are disregarded.) 
3) the averages with respect to the p(v i )  (i > k )  have been taken. 
We want to derive a connection between the return probability to k and that 

to k + 1. Suppose the particle starts at site k at t = 0, makes n returns to k from 
the right, the last one at time t, and within this time interval also makes m 
returns to k + 1 from the right. (See fig. 1.) There  are ( " % ] - 1 )  ways of 

n times m times 

I I I 

k k + l  k + 2  

0 D- 

I 
, I 

I-  • • 

. I 

Fig. 1. Illustration of the path of the particle between scatterers k - k  + 2. 
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ordering the sequence of returns to k + 1 in time, where we use the convention 
( r a m 1 )  = t~m0. In consequence,  the Laplace transform of O~(k, t) satisfies the 

equation 

~(k'z)=~f d~+'p(~*+')[I*(z)ln[lk=,, 
0 

+,(~)V 

m + n - 1 )  
x 4',,,(k + 1, z ) ,  (14) 

m 

where lk(z  ) is the Laplace transform of l , ( t )  (known already) and O0(k + 1, z) 
= 1. From (13), we see 

1 

~"* (15) l ~ ( z ) -  z + v k 

To stress the dependence on ~'k, we will write l(u~) and qJ,,(uk) instead of lk(z  ) 
and 0n(k, z). When we define 

, _  ~,n (v,) +" V(~,)]" (16) 

(14) can be written as 

o r =  Tgcr (17) 

where the operator  T has matrix elements 

= f ( iv 
0 

Here  we used (15); note that ~/,,r is independent of v~! From the probabilistic 
interpretation of g,,,(k, t) and eq. (14) we obtain 

7 ~,, = 1. (19) 

In addition, from (15)-(18)  and (2) one may derive 

Iim T 4,,, = O. ( 2 0 )  

The small-z behaviour of g,~ will be calculated in section 4. 
Next, we want to express (P, , (z))  in terms of 0 r and some operators acting 
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on it. For this purpose, we define still another probability density. Let  ~n(t) be 
the p.d. for the arrival of the particle at site n exactly at time t, under the 
condition that it resided at site 0 at t = 0. Its Laplace transform, ~ . ( z ) ,  satisfies 
the relation 

1 
P.(z) = W.(z) ~ . ( z )  = - -  ~ . ( z ) ,  (21) z+u~ 

where W.(z) is the Laplace transform of W.(t), defined in (11). ~ . ( z )  can be 
expressed in terms of the Laplace transformed return probability densities in 
the following way: For n = 0 we have 

~o(z)=- ~(vo)= ~ Z m + n 
.,=0 .=0 m ~b"(v°) ~b'~(v°) ' 

(22) 

The explanation is as follows: suppose the particle returns to the origin m times 
from the right and n times from the left. The total time spent on the right of 
the origin is t' and on the left it is t -  t'. The total number of different 
sequences of returns from right and left is ('+m '~). Hence the probability 
density for these events to occur is given by 

(m+n)m i dt' tP'~(O't')tPn(O't-t')" 
o 

Laplace transformation and summation over m and n leads to (22). Note that 
we tacitly used left/right symmetry at each site. 

The same kind of reasoning gives for ~ ( z )  

,i. tv  a m + n n 

rn = 0  n = 0  /~ = 

This may be written as 

+t) 
l [I(v°) ] n + 1 [l(v' )] n~0l(v~ ) 

(23) 

.1)= RS(.,,, (24) 

where ( , ) denotes the usual inner product and the operators R and 
S(v~, Vl) are defined through 

Rmn (m+n t 
tl 
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s,,,,,(,,,, . , )=  ( m + ,){i(,,,>1,,,+' I1(~, >1'" 
t7 

General iz ing this analysis one obtains 

P,,(•, . . . . .  u,,) = (4'(uo)+ RSCv,,. v,). . .S(v,,  ,, u,,) 4'(v,,)).  

which holds for n > 1. W h e n  we define 

) s , , , , , ( v , ) = (  m + "  [1(,,,)1 ''~ .... , 
177 

and use (16), it is a mat te r  of  algebra to show that  

1 
:#, ,(< . . . . .  ,,,) = ~ (4" i  S ( < ) S ( < ) . . .  S(<,)4' ' ) .  

2 S (  ~,,, ) 4',), 
From (15) and (21) we obtain 

P,,(z) = (4''i S(,,,,) S ( u , ) - - -  S(u ,) - -  

which holds for n />  O. Now take the average 

<e,,(z) . . . .  (+',<s(~,,)>,,,<s(~,)>,, <s(~,, , )5, , , , , (  4' 

,4' 

where,  for instance, {S(u)) , .  = j',• S(u) p(u) du. 
As a last step, writing S for (S(v)),., we will express (2S(~,)/u), .& ~ 

of  S acting on 4'3. From (15) and (28), we have 

..... ( " + " )  i (7 ; , )  ...... = 2 ~ ....... +~ d u o ( ~ ' )  u 
', II o 

0 

\ v - - - - / l ' l l l l l l  \ ?~'l P " 

and 

,) 

(26) 

(27) 

(2s) 

(29) 

(3o)  

(3[) 

in terms 

(32) 

(33) 
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Comparison of (32) and (18) yields 

Sin, = Tin+,,, (34) 

and, likewise, we find 

, ~ , ~ , m .  = z (Tin+l,._, + ~ .  - 2 T i n + l , . ) .  (35) 

Using (17) and (34), (35) yields 

( ~ f ~ )  OT=I  (szor + Or-2SO r) (36) 
Z 

which is inserted into (31) to give our formula for (P.(z)): 

1 (or, s . ( l _ S ) 2 0 r  ) n>-O (37) <P.(z)) = z ' " 

In case n < 0, we simply have 

<P.(z)) = <P . (z))  (38) 

owing to the left/right symmetry at each site and the averaging procedure. In 
particular, for n = 0 we find 

1 ( 0 r , ( 1 _ S ) 2 0  r ) =  1 < e0(z)> = z ~ ((1 - s ) 0  ~, (1 - s ) 0  r) 

= -  - 0 , + , )  • (39) 
Z n - 0  

Here we used the fact that S is symmetric (from (32) and (17) and (34)) to give 
T T 0 T ( s o ) ,  = 0,+1. This will enable us to calculate (P0(z))  for z--+0 once has 

been found. 
It will prove helpful considering the Green's  function G(k, z), as defined in 

(10). Insertion of (37) into (10), and using the formal expression 

2 (e +-ikS)" - e +-iks (40) 
t'/=0 I - -  

leads to 

1 ~{0r' (1-S2)(1-S) 2 
z i + - S  -~ ~2-S-cos k o r )  " (41) G(k, z )  
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Expanding (41) in powers of k, we find 

[ ( (  G ( k , z ) = l z  1+  ~,~, 2 + S  1 S ) k~ 

( (  2))k  7 l 25 1 5 + g r 
+ 0 \  6 12 .9+  6 l - S  ( l - S )  2 ( 1 2 s ) - '  

+ c ( k % ] .  (42) 

Note that indeed G(0, z ) =  E~ _~ (P,,(z)) : 1/z. From (41), this can be seen 
as follows: 

_ l [ ( ~ , ~  4 , " )  - (s4, ~, s4,') l  G(0, z) = 1 (0.~, (1 - s '~)~ ' )  : z 
Z 

: -  (q , , , ) - -  (~,~+l) = - ( ~ , , ) - :  - , 
Z n = 0  n : 0  Z Z 

where we used 19), (32) and (34). 
It is seen that in using G(k, z) instead of {P,,(z)), the problem is shifted 

from studying the action of the operator S" on tbT to doing the same for the 
operator 1/(1 - S ) " .  Unfortunately, this will not be any simpler. We will use 
(42) to find the second moment. A general formula for G(k, z) reads [51 

C ( k , z )  1 ~ ( -1 )"  = -z + , ~  (2n)! k2,' ( x2" ( z ) )  " (43) 

where (xZ"(z)) denotes the Laplace transform of {xZ"(t)). Equating the 
second terms of (42) and (43) gives the desired expression for (x2(z)): 

2 [2(~br, ~bs) _ 2(~br ~b") - (~b'. S ~ r ) ] ,  (44) 

where we have introduced 

~ A '  ] ~' (45) 
1 - S ' 

4 .  E x p l i c i t  c a l c u l a t i o n s  

In this section, we briefly outline how to calculate g T and ¢b ~', which were 
defined in the previous section and derive from this the small-z behaviour of 
(Po(z)) and {x2(z)). More details are presented in ref. [9]. 
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4.1. Calculation o f  d/r 

Remember  qjr satisfies eq. (17), i.e. 

~,  Tm,~br = q , r ,  (46) 
n 

where Tmn is defined in (18). First, we will put Tm, into a more usable form. 
Inserting (2) into (18) and then changing the variable of integration to r = 1/u, 
we obtain 

( - ) f 1 . (47) Tm n = m +nn 1 2-(m+n)(1 -- a)2 ~-1 dr  r ~-2 (1 + zr) "+~ 
1 / 2  

The integral can be expressed in a hypergeometric function (ref. [7], 
(3.194.2)). Making extensive use of its properties, we find for z---~0 

Tm _~ ( m + n - 1 )  2-(m+") 
n 

×(1  + 2~-1(1 - a) (a  - 2)! (n + m -  a)r ) (48) 
( n + m  1)! zl-~ " 

Here we made some assumptions, concerning the scaling of n and z. They can 
be justified afterwards by the results we find in this way. Using Stirlings 
formula in the form 

N! = N N e-N(2"rrN)a/2[1 + ~7(1/N)] (49) 

and the approximation (1 - e)" = 1 - / z e  (e ~ 0 ; /z  > 0), one may rewrite (48) 
a s  

TIn,, ~ ( m  + n -  1)2_(m+n,( 1 _ ,)(m+.)l-~, (50) 
n 

where 

e = 2~-~F(a) z l-~ (51) 

We now return to (46). We assume that the dependence of T, . .~ r on n is 
sufficiently smooth to write 

£ T.~.tpr~ f T ( m , n )  r = 6,, d n .  (52) 
n 

0 
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Fur the rmore .  we suppose that T(m, n) g,7(n) has a max imum for. say, n = n. .  
So 

<) =,, 1,3, 

The  idea now is to expand  the logari thm of T(m, n) &r(n)  in a Tay lor  series 
about  n = n. .  Doing so, we obtain 

T,,,,,&,/, ~ T, ...... g'/,i, f exp[a(x  - no) - b(x - n,,) 2 + c(x - n,.) ~ 
It 

+ d ( x -  n.) 4 + . . .]  dx 

_T,,,,,,,6,,I ,~b,,~(l+4tT+~b_3 " 3  d 15 c ~') (54) 

Here  

a = log[ T(rn. n) 0,~ = 0 ( f rom (53)) , 
it - * t~ )  

etc. - b  = ~ log[T(rn,  n) OJ,] . . . .  ,, (55) 

The  calculation of  n~. b. c and d is laborious,  but s t raightforward,  n ,  is 
de te rmined  by (55). Inserting (50) into (55).  the different iat ion can be carr ied 
out  if we apply Stirling's formula  (49) to the factor  ( .... 2 ~). Then  the 
derivatives of log T(m, no) with respect  to n 0 are compu ted  and inserted into 
(54). Finally, expanding log ~0,, r about  n 0 as well, we find from (46) that &,r has 

to satisfy 

de b 1 
d n  2 e2 ~ n q,,, = O. (56) 

A general  solution can be found in ref. [7], (8.494.10);  the solution that 
satisfies (19) and (20) is readily found to be 

t~,,T= A(z)',/-g Kl.(2 ,~,( 2 ~ _  Z(l ,,),2n(2 (~1,'2)' , 

where  
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2 [ v (~ )  
A(z)= r(1/(2- a)) (2- a )  2]  

1/2(2-a) 
Z (1-a)/2(2-a) . (57) 

Here K1/(2_~) denotes a modified Bessel function of order 1 / ( 2 -  a).  

4.2. Calculation of  O s 

The vector 0 s was defined in (45) as 

0 s  - 1 
I _ S  Or 

or  

O ~ - s 4 ,  s = 0 ~ . (58) 

For z-->0, we find from (34) and (50) 

Sm~ ~ ( m + n ) 2--('~+n+i)(1- e) ('+'+~)'-" . ( 5 9 )  
n 

T T gn S.,.O s can be treated much the same way as was 2 .  mnOn ; as a result we 
find the approximation 

( dy ) 
Z S.~.O s -~exp my 2 - y  - m ~mm - e21 aml-~ Osm' (60) 

n 

where 

O log 0Sm . (61) 
y(m) = -  O---m 

Expanding the exponent in (60), inserting the result into (58) and substituting 
(61) for y leads to the following differential equation for 4/, s, (0 r, being a 
known function; see (57)): 

2 S 0 S 0 0 , .  q'm 
+ e21-~ I ~-s _ O r  (62) - - -  m I / / m =  m '  m ornZ Om 

which may be written as 

m l / 2  ( 0 2 1 e21-%n-~) . 1/2--S' ,  T 
\ ~ m 2  + --4m 2 --  (m qJm)= --Om 

From (19), (20) and (45) we conclude that 0 s has to satisfy 

(63) 
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lira &,~, = 0 ( 6 4 )  
r n ~  

and 

lira ~,,~, exists. (65) 
m ~ 0  

A solution of the homogeneous equauon corresponding to (63) can be found in 
ref. [7], (8.491.2). The method of variation of the constants of integration, 
combined with the conditions (64) and (65), leads to 

,,, - 2 a t % t ° m  ) l , ( B k  ~ ,~).2)~p~ dk 

where 

So 1 / ( 1 -  S) acts on ~ as an integral operator, at least approximately. The 
Green's function, which is made up of terms like (&r [1/(1 - S)"]&r),  can 
now be expressed in terms of integrals over Bessel functions. Unfortunately, it 
seems that these integrals cannot be evaluated analytically. 

4.3. Evaluation o f  ( P,,(z)) 

Now that we have found ~b,z , the calculation of ( P , ( z ) )  is straightforward. 
Owing to the factor z Ir ,,/.'e in the argument of t0, t, (see (57)), we can write (39) 
for z--~0 as 

{ e , , ( : ) } =  i 
z \ dn / d n .  

(} 

(67) 

After insertion of (57) some algebra gives 

( p o ( z ) )  _ ( 2 -  a)A•(z)  f xK~ , , (x) dx 
2 Z  1 ' ( 2  • 

(68) 

Again, the integral can be found in ref. [7], (6.576.4)" the result reads 
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C(a)  
Zl/(2_~) , (69) 

(/~(Og) ~1/(2-~) / ' (2--  1/(2-- a)) (70) 
C(a) = \ i2 - a)2 / F(1 T 1/(2 a)) " 

This result agrees with previous ones (see section 5). 

4.4. The second m o m e n t  (xZ(z)) 

To calculate the second moment, we recall (44); inserting (57) and (66) one 
finds that the first term is dominant for z--* 0: 

4 1 

where 

256 
O(a)  = 26/(2_~)(2 _ ,~1(2_3.~2_~r2(1/(2 - a)) [F(a)] 2/(2-") 

and 

I(~) = f ~(l+~)/(2-a) V /~'1/(2-a) I~A;]t'-~ Ko(X ) 
o 

x 

0 

(71) 

(72) 

5. Discussion 

The results (69) and (70) for ( P o ( z ) )  have been obtained before in exactly 
the same form by Stephen and Kariotis [4] and by Nieuwenhuizen and Ernst 
[3]. Bernasconi et al. find the same z-dependence for ( P o ( z ) ) .  They also give 
an explicit expression for the coefficient C(~), but this does not obviously 
coincide with (70) although numerically it is at least very close (see fig. 2). The 
results for ( xZ(z ) )  contained in (71) and (72) have been given before by 
Stephen and Kariotis, who obtained them by an entirely different method [4]. 
Nieuwenhuizen and Ernst and Bernasconi et al. present the same exponent for 
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I X l  

° 

0 

I , ,  I . -  I I . ,  

| ~ i t 

0.0 0.2 0.4 0.6 0.8 J..O 

Fig. 2. The inversc coefficient I /C(~)  as a function of ~, Curve: eq, (70): dots: expression of 
Bernasconi et al. 

z. Bernasconi et al. do not give the prefactor,  while the expression given by 
Nieuwenhuizen and Ernst leads to values two to four times as large as the ones 

we computed.  Since Stephen and Kariotis and we got the same expression 
along completely different routes we strongly expect this to be the correct one. 

It is interesting to compare  the system under consideration to the trivial case 
where all transfer rates equal the same constant,  say, u 0. (This is sometimes 
called: the ordered case.) For this purpose,  we transform back (69) and (71) to 
find 

c(,~) l 
( P ° ( t ) )  - F ( I / ( 2 -  ee)) t t '  ,~),~2 ~ (73)  

and 

D(cQ l ( a )  .~,,12 ,,1 (x2(t)) = V ( ( 4 -  3 a ) / ( 2 -  a))  t2~ (74) 

whereas in an ordered system 
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1 
Po(t) = ~- ~m----ot (75) 

and 

{x2(t)) = rot.  (76) 

So, as expected, for our problem particle transport is slower. But there is 
more. In an ordered system, we have 

1 (77)  e~°(t) (x2( t )  ) = 2--4 ' 

which is characteristic of the Gaussian profile of Pn(t) as a function of n. For 
our system, we find 

(Po(t) )2 ) x2(t) ) _ H(,~) (78) 

with H depending explicitly on a. 
For some a-values,  we computed H ( a )  numerically (see fig. 3). Our results 

o 

l I D  

O 

t O  

--t- 

o 

o 

i i i | 

0.0 0.2 0.,I 0.6 0,8 1.0 

0~ 

Fig. 3. The product (Po(t))2(x2(t))  for long times, plotted as a function of a. 
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indicate that H ( 0 ) =  1/2~r and H ( a ) >  1/2w (0 < a < 1). This means that the 
profile of (Pn(t))  is not a Gaussiam but, given its height at the origin, it is 
broader! So the time-development of the system under consideration is not 
only slowed down in comparison to the corresponding ordered system, it 
differs from it in a more fundamental way. 

In conclusion we want to indicate how in principle our results could be 
extended. First of all the vectors [ 1 / ( 1 -  S)"]~ r may in principle be calcu- 
lated by replacing on the right-hand side of (66) q s r  successively by q rs, 
[ 1 / ( 1 -  S)]g "s, etc. This causes no problems of principle, but control of the 
accuracy of all successive integrals may readily become a numerical problem. 
Another  strategy would be approximating S by a finite-dimensional matrix, in 
which case the matrices S", 1/(1 - S)" as well as 1/(1 + S 2 - 2 S  cos k), appear- 
ing in (37), (42) and (41), respectively, could be calculated algebraically. 

Finally the calculation of corrections to the leading asymptotic behaviour of 
the various quantities of interest can in principle be done as well, but for this 
purpose probably the methods of refs. [3, 4] are more suitable. 
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