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An approximate theory is developed for tracer diffusion in rectangular lattice 
gas models with anisotropic jump rates to neighboring unoccupied sites in 
different directions. Comparison with Monte Carlo simulations on quadratic 
lattices with several ratios for the jump rates in orthogonal directions shows a 
satisfactory agreement in all cases investigated. 
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1. I N T R O D U C T I O N  

In an earlier paper, (1) to be referred to as I, we derived a theory for the 
velocity autocorrelation function (or, equivalently, the mean-square 
displacement) and the correlation factor characterizing tracer diffusion by 
means of an isotropic nearest neighbor hopping process in lattice gas 
models. A more formal derivation leading to the same results has been 
given by Tahir-Kheli. (2) If the lattice is anisotropic or/and the jump rates 
for jumps in different directions are not all equal, the corresponding theory 
requires the solution of a set of coupled matrix equations. (3"4) In the case of 
simple rectangular lattices, however, this complication does not arise, 
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because jumps in directions perpendicular to each other remain 
uncorrelated on average. 

In this paper we extend the above theory to these lattices and compare 
its predictions for the time dependence of the mean-square displacements of 
a tracer particle and the corresponding correlation factors to the results of 
Monte Carlo simulations. We find a good agreement. Comparisons to 
other theories are also presented. 

2. T H E O R Y  

Consider a simple d-dimensional rectangular lattice with one tracer 
particle occupying one of the lattice sites, while the remaining sites have 
probability c, independently of each other, of being occupied by a bulk 
particle. Tracer particle and bulk particles may jump to unoccupied 
neighboring sites in one of the principal directions, with jump rates F~ for 
bulk particles and ?,F~ for tracer particles, for jumps in the +~c or -~: 
direction. Following closely the methods of L we derive approximate 
expressions for the velocity autocorrelation functions 

C~(t) = (G(O) G(t)) (1) 

where v~(t) is the ~c component of the tracer particle velocity (see Ref. 5 for 
its proper definition) at time t and the brackets denote an equilibrium 
average. Nonvanishing contributions to (1) all result from realizations of 
the hopping process in which the tracer particle performs jumps in the + ~c 
or - tc direction both at the initial time 0 and the final time t. As in I, the 
vacancy with which the tracer particle exchanges position at t = 0 is called 
the special vacancy, the correlation between v~(0) and G(t) is due to further 
interactions between the tracer particle and this special vacancy, and the 
actual dynamical process describing these interactions is approximated by 
a process in which the special vacancy performs a simple random walk 
with constant jump rates F~ if not exchanging positions with the tracer 
particle, and the tracer particle likewise performs a simple random walk 
with effective jump rates fl~7~F~ if not exchanging positions with the 
special vacancy. The factors p~ can be determined self-consistently, as we 
will show. The rate for exchange of positions between special vacancy and 
tracer particle when neighboring each other in the ~: direction remains 
7~F~. Finally some subtle symmetry arguments are needed, as explained in 
Ref. 6, for the situation that tracer particle and special vacancy are next to 
each other. Under the present approximation the relative position p of 
special vacancy with respect to the tracer particle describes a random walk, 
to be referred to as the actual random walk performed by 9, with jump rates 
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7~F~ for jumps from + a ~  to T - a ~ ,  i.e., when the special vacancy jumps 
over the tracer particle (here a~ is the lattice unit in the x direction and ~ 
is the unit vector in this direction), and (1 +/~7~) F~ for jumps in the +K 
or -~c direction to neighboring sites different from the origin. 

By the arguments given in Ref. 6, the Laplace transform C~(s) of C~(t) 
can be expressed as 

8~(s) = (1 - c )  ~,~ r~,~ 
1 - ~ ( s )  

1 + ( 2 c -  1) ~ ( s )  
(2) 

where the inverse Laplace transform ~ ( t )  of ~ ( s )  is defined as the 
probability density for an actual random walk as defined above, but with 
an absorbing boundary at p~ = 0 and with starting point p = a ~  at time 0, 
to first arrive at p = - a ~  at time t. 4 In analogy to (I.3), ~ can be 
expressed as 

with 

~(S)=s+q~F-~ 1-- E(s+v)/(s+q~l~)] k~(s) (3) 

d 
v = 2  ~ (I+/~.?~)F~ and q , = v / F ~ - [ l + ( ~ - l ) ? ~ ]  

The inverse Laplace transform RE(t) of k~(s) can be interpreted as the 
probability density for a first return to the site a ~  in a homogeneous ran- 
dom walk p with jump rates (1 +/~,7~) F~ for jumps to nearest neighbors in 
the +e or - e  directions and an absorbing boundary at p~=0. The 
expression in braces represents the Laplace transform of the probability 
density for an actual random walk with absorbing boundary at p~=0, 
arriving at p = a ~  at t = 0  +, to arrive at this same position at time t 
without having crossed the plane p~=0. Included is a 5-function 
contribution 8(t-O+). The quantity R~ is directly related to P~(t), the 
probability for a homogeneous random walk as described above, with 
starting point p(0)= a ~ ,  to be back at the same position at time t. In the 
Laplace domain this relation reads 

~ ( s ) =  [1-(s+v) P~(s)] ~ (4) 

4 The definition of O~(t) given in I could be used here, too. However, as soon as the random 
walk enters the plane p ~ = 0  the probabilities for subsequent exchanges between tracer 
particle and special vacancy in the + tr and - K  directions become strictly equal, and hence 
no net contributions in Eq. (1.2) arise and the definition of ~b~ can be simplified to the one 
given here. 
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For a periodic lattice with periods N~ in the principal directions, P~ can be 
expressed in terms of lattice sums (7) as 

a 2 sin 2 K~ 
P~(~) = I-i N~ -* X ' - - Z  ~=* K, KdS+2Eff=I(I+fl~Y~)F~(1--cosK~) 

(5) 

where ZK~ runs over the values [0, 2u/N,, 4u/N ...... 2u(N~-  1 )/N~]. 
Inserting (4) into (3) and then (3) into (2), one obtains for C~(s) the 

expression 

~ ( s ) =  (1-c)7~F~a~ (6) 

with ~ = s/v and/5~(~) = vP~(s). 
From (6) one obtains a set of self-consistency relations for the 

constants fl~ by observing that the diagonal elements D ~  of the tracer 
diffusion tensor are given on one hand through the Green-Kubo formulas 
a s  

D'~= lim C~(s) (7) 
s ~ 0  + 

on the other hand through the assumption of an effective random walk 
with jump rates fl~7,F~, as 

D ~  = fi~y~F,~a 2 (8) 

Equating (7) and (8), one explicitly obtains the self-consistency equations 
a s  

d Z~=~ 2(1 + f i , 7~)F~- (1  +fl~7~)F~fiK(0) 
fix= ( l - - c )  (9) 

Y~= 2(l+fl~y~)F~--[l+(fl~-Zc)y~]F~fi~(O) 1 

In general these equations must be solved numerically, as fi~(0) is a 
transcendental function of the variables fl~. For the quadratic lattice these 
equations can be made more explicit by evaluating the p~(0) from (5) in 
the thermodynamic limit, with the result 

fi~(O)=~(l+r)[(l+r)arccotg(,,ffr)-xfr] ( lo)  

where r =  (l q - f l y T y ) f f y / E ( l - k f l x ' ~ x ) l ' x ] ,  and a similar expression holds for 
py(0). 
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3. MONTE CARLO SIMULATIONS IN TWO DIMENSIONS 

In order to investigate the merits of the theory explained above, we 
have performed numerical simulations on quadratic lattices for two fixed 
concentrations, c=0.501 and 0.920, setting yx=Ty= 1 and varying ~= 
Fy/Fx between 0.001 and 1.0. The numerical simulations of the hopping 
process were performed by Monte Carlo techniques comprehensively 
described in Ref. 6; here we mention some special features and charac- 
teristic modifications used for the present model. Lattices with N =  
600 • 600 and (for the longest runs) 200 x 200 sites were introduced with 
periodic boundary conditions. For c=0.920, in order to achieve good 
enough statistics we directly simulate the hopping of the vacancies, as was 
done by Murch. In order to compare our numerical results to the theory of 
the preceding section, we solved numerically in (10) for the anisotropic 
correlation factors 

f~= fl~/(1-c) (11) 

The results for different values of e and c are shown in the third and sixth 
columns of Table I, respectively. For comparison we also give the values 
f~K resulting from a theory by Tahir-Kheti. (9~'5 We can reproduce these by 
replacing all parameters/~ on the right-hand side of (9) by ( 1 -  c). 

Employing our numerical results for f~ in (6) and determining/~(() 
from (5) by doing one integration analytically and the next one 
numerically, we performed a numerical inverse Laplace transform of 

5 In the isotropic case this coincides with the theory of Ref. I0. 

Table I. Comparison of the Theoretical and Experimental Correlation 
Factors in the x and y Directions for Two  Concentrat ions and for 

Di f ferent  Values of the Jump Rate Ratio a 

C ~X f~xp f~ f~K fTp f~ fyXK 

0.501 1.0 0.704 ___ 0.001 0.703 0 . 7 2 4  0.704 • 0.001 0.703 0.724 
0.1 0.387 • 0.002 0.380 0 . 4 1 0  0.903 • 0.002 0.895 0.909 
0.01 0.150 • 0.0003 0 . 1 4 5  0 . 1 6 7  0.969 __ 0.002 0.966 0.972 
0.001 0.052 • 0.0004 0 . 0 4 8  0 . 0 5 8  0.985 • 0.004 0.989 0.991 

0.920 1.0 0.500 • 0.0003 0 . 4 9 6  0 . 5 0 7  0.500 • 0.0003 0 . 4 9 6  0.507 
0.1 0.210 • 0.0002 0 . 2 0 6  0 . 2 1 4  0.791 __ 0.0003 0 . 7 8 7  0.795 
0.01 0.072 • 0.0002 0 . 0 7 0  0 . 0 7 3  0.934 • 0.001 0.927 0.930 
0.001 0.023 • 0.0001 0 . 0 2 3  0 . 0 2 3  0.996 • 0.002 0.976 0.977 
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2CK(s)/s 2 by means of the procedure of Honig and Hirdes (11) to obtain a 
prediction for the mean square displacements of the tracer particle in the x 
direction and y direction as a function of time. 

The same quantities were computed in our Monte Carlo simulations 
in the time range 0 < 2(Fx + Fy)t <~ 10 4 for c~ = 0.001 and in the time range 
O < 2 ( F x + F y ) t < l O  3 for ~=1.0,  0.1, and 0.0l. {The time unit 
[2(Fx + F y ) ] - I  is the usual Monte Carlo step per particle, MCS/p. } 

In Fig. 1 we compare theory and simulation results for two different 
concentrations (c=0.501 and 0.920) and three different jump rate ratios 
(~--0.1, 0.01, and 0.001). The agreement is seen to be quite satisfactory in 
all cases investigated. The plots in the figures were made on a doubly 
logarithmic scale, but the agreement also looks quite good on a linear 
scale; the relative difference between theory and simulation results never 
exceeds a few percent. (The statistical errors in the data points are in all 
cases smaller than the plotting symbols.) Small systematic differences are 
present, however, especially at c--0.501 and large jump rate ratios. These 
are not visible in Fig. 1 and would hardly be so in a linear plot. 

Finally, we determined the "experimental" correlation factorsf~ xp from 
the average slope of the mean square displacements in the time range 10 3 

2(Fx + l y ) t  < 104 for c~ = 0.001 and the time range 102 ~ 2(F x + Fy)t < 10 3 

for e=0 .1 ,  0.01. The results are shown in Table I. Note that for small 
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Fig. 1. Mean square x and y displacements of the tagged particles on an anisotropic square 
lattices. ( - - )  Theory; (O)  results of the Monte  Carlo simulations. (The ratio c~ of the perpen- 
dicular to the horizontal j ump  rate is indicated to the right; the concentrations are also 

indicated. ) 
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values of ~, diffusion in the x direction shows a crossover from quasi-one- 
dimensional behavior for short and intermediate times (i.e., the mean 
square displacement in the x direction grows proportionally to t for very 
short times and to t ~/2 for intermediate times (5)) to normal diffusive 
behavior for long times. In the crossover region it may be described by an 
intermediate power law behavior, just as in the case of diffusion on two 
coupled linesJ 6) 

Tahir-Kheli's theory is seen to be quite satisfactory. However, for con- 
centration 0.5 the present theory appears to be slightly better. The error 
estimates in Table I correspond to one standard deviation. They were 
obtained by a least mean squares fit, giving equal weight to each of the 
data points and ignoring possible correlations between statistical 
deviations. Due to this neglect of correlations our error estimates may be 
somewhat too low, but, since in almost all cases the errors are extremely 
small, this should be without consequences regarding our conclusions. 

Note, however, that our fitting procedure introduces small systematic 
errors: first, the mean square displacement as a function of time for two- 
dimensional diffusive systems exhibits a logarithmically growing term (~'2'~2~ 
beyond the leading linear one, which enhances the average slope over a 
finite time interval. Second, for large jump rate ratio the system behaves 
quasi-one-dimensionally for intermediate times, implying the occurrence of 
a t ~/2 term in the mean square displacement in the x direction as a function 
of time, which also increases the average slope over finite time intervals. 

4. PERCOLATION T R A N S I T I O N  

Finally we remark on the percolation transition, manifesting itself 
through the vanishing of the correlation factors f~ at concentrations 
beyond a percolation vacancy concentration Cpv, in the limit that y~ tends 
to infinity. (1'2) In the anisotropic case it is not a p r i o r i  obvious, although 
physically reasonable, that all correlation factors vanish at the same per- 
colation density. However, from (6) and (5) one readily sees that this must 
be the case; the assumption that one or some of the /~ variables vanishes 
while the others remain finite immediately gives rise to contradictions. 
Moreover, in the two-dimensional case it is easy to show that, as c 
approaches the percolation density, the tracer diffusion, at least under our 
approximations, becomes isotropic, which means that the ratio /~xyx//~yyy 
tends to unity. As a consequence, the percolation density cpv is independent 
of the values of the parameters F~. 
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